Fix XCiT hub.load issue (#140)
* hub.load xcit from main branch * Fix other files using hub.load * Also change torch.hub.list Co-authored-by: Timothee Darcet <tdarcet@inrialpes.fr>pull/146/head
parent
499d9e2b3d
commit
cb71140186
|
@ -132,7 +132,7 @@ if __name__ == '__main__':
|
|||
model = vits.__dict__[args.arch](patch_size=args.patch_size, num_classes=0)
|
||||
print(f"Model {args.arch} {args.patch_size}x{args.patch_size} built.")
|
||||
elif "xcit" in args.arch:
|
||||
model = torch.hub.load('facebookresearch/xcit', args.arch, num_classes=0)
|
||||
model = torch.hub.load('facebookresearch/xcit:main', args.arch, num_classes=0)
|
||||
elif args.arch in torchvision_models.__dict__.keys():
|
||||
model = torchvision_models.__dict__[args.arch](num_classes=0)
|
||||
else:
|
||||
|
|
|
@ -60,7 +60,7 @@ def extract_feature_pipeline(args):
|
|||
model = vits.__dict__[args.arch](patch_size=args.patch_size, num_classes=0)
|
||||
print(f"Model {args.arch} {args.patch_size}x{args.patch_size} built.")
|
||||
elif "xcit" in args.arch:
|
||||
model = torch.hub.load('facebookresearch/xcit', args.arch, num_classes=0)
|
||||
model = torch.hub.load('facebookresearch/xcit:main', args.arch, num_classes=0)
|
||||
elif args.arch in torchvision_models.__dict__.keys():
|
||||
model = torchvision_models.__dict__[args.arch](num_classes=0)
|
||||
model.fc = nn.Identity()
|
||||
|
|
|
@ -41,7 +41,7 @@ def eval_linear(args):
|
|||
embed_dim = model.embed_dim * (args.n_last_blocks + int(args.avgpool_patchtokens))
|
||||
# if the network is a XCiT
|
||||
elif "xcit" in args.arch:
|
||||
model = torch.hub.load('facebookresearch/xcit', args.arch, num_classes=0)
|
||||
model = torch.hub.load('facebookresearch/xcit:main', args.arch, num_classes=0)
|
||||
embed_dim = model.embed_dim
|
||||
# otherwise, we check if the architecture is in torchvision models
|
||||
elif args.arch in torchvision_models.__dict__.keys():
|
||||
|
|
|
@ -99,7 +99,7 @@ def dino_xcit_small_12_p16(pretrained=True, **kwargs):
|
|||
"""
|
||||
XCiT-Small-12/16 pre-trained with DINO.
|
||||
"""
|
||||
model = torch.hub.load('facebookresearch/xcit', "xcit_small_12_p16", num_classes=0, **kwargs)
|
||||
model = torch.hub.load('facebookresearch/xcit:main', "xcit_small_12_p16", num_classes=0, **kwargs)
|
||||
if pretrained:
|
||||
state_dict = torch.hub.load_state_dict_from_url(
|
||||
url="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p16_pretrain/dino_xcit_small_12_p16_pretrain.pth",
|
||||
|
@ -113,7 +113,7 @@ def dino_xcit_small_12_p8(pretrained=True, **kwargs):
|
|||
"""
|
||||
XCiT-Small-12/8 pre-trained with DINO.
|
||||
"""
|
||||
model = torch.hub.load('facebookresearch/xcit', "xcit_small_12_p8", num_classes=0, **kwargs)
|
||||
model = torch.hub.load('facebookresearch/xcit:main', "xcit_small_12_p8", num_classes=0, **kwargs)
|
||||
if pretrained:
|
||||
state_dict = torch.hub.load_state_dict_from_url(
|
||||
url="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p8_pretrain/dino_xcit_small_12_p8_pretrain.pth",
|
||||
|
@ -127,7 +127,7 @@ def dino_xcit_medium_24_p16(pretrained=True, **kwargs):
|
|||
"""
|
||||
XCiT-Medium-24/16 pre-trained with DINO.
|
||||
"""
|
||||
model = torch.hub.load('facebookresearch/xcit', "xcit_medium_24_p16", num_classes=0, **kwargs)
|
||||
model = torch.hub.load('facebookresearch/xcit:main', "xcit_medium_24_p16", num_classes=0, **kwargs)
|
||||
if pretrained:
|
||||
state_dict = torch.hub.load_state_dict_from_url(
|
||||
url="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p16_pretrain/dino_xcit_medium_24_p16_pretrain.pth",
|
||||
|
@ -141,7 +141,7 @@ def dino_xcit_medium_24_p8(pretrained=True, **kwargs):
|
|||
"""
|
||||
XCiT-Medium-24/8 pre-trained with DINO.
|
||||
"""
|
||||
model = torch.hub.load('facebookresearch/xcit', "xcit_medium_24_p8", num_classes=0, **kwargs)
|
||||
model = torch.hub.load('facebookresearch/xcit:main', "xcit_medium_24_p8", num_classes=0, **kwargs)
|
||||
if pretrained:
|
||||
state_dict = torch.hub.load_state_dict_from_url(
|
||||
url="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p8_pretrain/dino_xcit_medium_24_p8_pretrain.pth",
|
||||
|
|
|
@ -44,7 +44,7 @@ def get_args_parser():
|
|||
# Model parameters
|
||||
parser.add_argument('--arch', default='vit_small', type=str,
|
||||
choices=['vit_tiny', 'vit_small', 'vit_base', 'xcit', 'deit_tiny', 'deit_small'] \
|
||||
+ torchvision_archs + torch.hub.list("facebookresearch/xcit"),
|
||||
+ torchvision_archs + torch.hub.list("facebookresearch/xcit:main"),
|
||||
help="""Name of architecture to train. For quick experiments with ViTs,
|
||||
we recommend using vit_tiny or vit_small.""")
|
||||
parser.add_argument('--patch_size', default=16, type=int, help="""Size in pixels
|
||||
|
@ -166,10 +166,10 @@ def train_dino(args):
|
|||
teacher = vits.__dict__[args.arch](patch_size=args.patch_size)
|
||||
embed_dim = student.embed_dim
|
||||
# if the network is a XCiT
|
||||
elif args.arch in torch.hub.list("facebookresearch/xcit"):
|
||||
student = torch.hub.load('facebookresearch/xcit', args.arch,
|
||||
elif args.arch in torch.hub.list("facebookresearch/xcit:main"):
|
||||
student = torch.hub.load('facebookresearch/xcit:main', args.arch,
|
||||
pretrained=False, drop_path_rate=args.drop_path_rate)
|
||||
teacher = torch.hub.load('facebookresearch/xcit', args.arch, pretrained=False)
|
||||
teacher = torch.hub.load('facebookresearch/xcit:main', args.arch, pretrained=False)
|
||||
embed_dim = student.embed_dim
|
||||
# otherwise, we check if the architecture is in torchvision models
|
||||
elif args.arch in torchvision_models.__dict__.keys():
|
||||
|
|
Loading…
Reference in New Issue