work for 1 gpu vit model

pull/488/head
liyubrt 2024-11-30 08:07:03 -08:00
parent 2aae191d0b
commit d683211ae3
15 changed files with 197 additions and 950 deletions

View File

@ -1,126 +0,0 @@
MODEL:
WEIGHTS: ''
compute_precision:
grad_scaler: true
teacher:
backbone:
sharding_strategy: SHARD_GRAD_OP
mixed_precision:
param_dtype: fp16
reduce_dtype: fp16
buffer_dtype: fp32
dino_head:
sharding_strategy: SHARD_GRAD_OP
mixed_precision:
param_dtype: fp16
reduce_dtype: fp16
buffer_dtype: fp32
ibot_head:
sharding_strategy: SHARD_GRAD_OP
mixed_precision:
param_dtype: fp16
reduce_dtype: fp16
buffer_dtype: fp32
student:
backbone:
sharding_strategy: SHARD_GRAD_OP
mixed_precision:
param_dtype: fp16
reduce_dtype: fp16
buffer_dtype: fp32
dino_head:
sharding_strategy: SHARD_GRAD_OP
mixed_precision:
param_dtype: fp16
reduce_dtype: fp32
buffer_dtype: fp32
ibot_head:
sharding_strategy: SHARD_GRAD_OP
mixed_precision:
param_dtype: fp16
reduce_dtype: fp32
buffer_dtype: fp32
dino:
loss_weight: 1.0
head_n_prototypes: 65536
head_bottleneck_dim: 256
head_nlayers: 3
head_hidden_dim: 2048
koleo_loss_weight: 0.1
ibot:
loss_weight: 1.0
mask_sample_probability: 0.0
mask_ratio_min_max:
- 0.1
- 0.5
separate_head: false
head_n_prototypes: 65536
head_bottleneck_dim: 256
head_nlayers: 3
head_hidden_dim: 2048
train:
batch_size_per_gpu: 64
dataset_path: ImageNet:split=TRAIN
output_dir: .
saveckp_freq: 20
seed: 0
num_workers: 10
OFFICIAL_EPOCH_LENGTH: 1250
cache_dataset: true
centering: "centering" # or "sinkhorn_knopp"
student:
arch: vit_large
patch_size: 16
drop_path_rate: 0.0
layerscale: 1.0e-05
drop_path_uniform: true
pretrained_weights: ''
ffn_layer: "mlp"
block_chunks: 0
qkv_bias: true
proj_bias: true
ffn_bias: true
teacher:
arch: vit_base
patch_size: 16
drop_path_rate: 0.0
layerscale: 1.0e-05
drop_path_uniform: true
pretrained_weights: ''
ffn_layer: "mlp"
block_chunks: 0
qkv_bias: true
proj_bias: true
ffn_bias: true
momentum_teacher: 0.992
final_momentum_teacher: 1
warmup_teacher_temp: 0.04
teacher_temp: 0.07
warmup_teacher_temp_epochs: 30
optim:
epochs: 100
weight_decay: 0.04
weight_decay_end: 0.4
base_lr: 0.004 # learning rate for a batch size of 1024
lr: 0. # will be set after applying scaling rule
warmup_epochs: 10
min_lr: 1.0e-06
clip_grad: 3.0
freeze_last_layer_epochs: 1
scaling_rule: sqrt_wrt_1024
patch_embed_lr_mult: 0.2
layerwise_decay: 0.9
adamw_beta1: 0.9
adamw_beta2: 0.999
crops:
global_crops_scale:
- 0.32
- 1.0
local_crops_number: 8
local_crops_scale:
- 0.05
- 0.32
global_crops_size: 224
local_crops_size: 96
evaluation:
eval_period_iterations: 12500

View File

@ -0,0 +1,7 @@
# this corresponds to the default config
train:
dataset_path: ImageNet:split=TRAIN
batch_size_per_gpu: 64
student:
arch: vit_large # vit_large, nextvit
block_chunks: 4

View File

@ -12,8 +12,8 @@ from typing import Dict, List
import torch
import torch.distributed as dist
_LOCAL_RANK = -1
_LOCAL_WORLD_SIZE = -1
_LOCAL_RANK = 0
_LOCAL_WORLD_SIZE = 1
def is_enabled() -> bool:

View File

@ -6,6 +6,7 @@
import logging
from . import vision_transformer as vits
from .nextvit import NextVitSmall
logger = logging.getLogger("dinov2")
@ -27,14 +28,20 @@ def build_model(args, only_teacher=False, img_size=224):
interpolate_offset=args.interpolate_offset,
interpolate_antialias=args.interpolate_antialias,
)
teacher = vits.__dict__[args.arch](**vit_kwargs)
if args.arch in vits.__dict__:
teacher = vits.__dict__[args.arch](**vit_kwargs)
else:
teacher = NextVitSmall()
if only_teacher:
return teacher, teacher.embed_dim
student = vits.__dict__[args.arch](
**vit_kwargs,
drop_path_rate=args.drop_path_rate,
drop_path_uniform=args.drop_path_uniform,
)
if args.arch in vits.__dict__:
student = vits.__dict__[args.arch](
**vit_kwargs,
drop_path_rate=args.drop_path_rate,
drop_path_uniform=args.drop_path_uniform,
)
else:
student = NextVitSmall()
embed_dim = student.embed_dim
return student, teacher, embed_dim

View File

@ -0,0 +1,50 @@
import torch
from torch.nn import functional
import sys
sys.path.append('/home/li.yu/code/JupiterCVML/europa/base/src/europa')
from dl.network.nextvit_brt import _get_nextvit
class NextVitSmall(torch.nn.Module):
"""BRT Segmentation model with definition to make it a custom model supported."""
def __init__(self, num_classes=197*1024) -> None:
super().__init__()
# define backbone
self.backbone = _get_nextvit(
model_size="small",
frozen_stages=-1,
norm_eval=False,
with_extra_norm=True,
norm_cfg=dict(type="SyncBN", requires_grad=True),
in_channels=3,
)
# self.proj_head = torch.nn.Sequential(
# torch.nn.Linear(1024, num_classes),
# )
assert num_classes == 197 * 1024
self.num_register_tokens = 1
self.embed_dim = 1024
self.proj_head = torch.nn.Linear(1024, num_classes)
def forward_backbone(self, x, masks=None):
y = self.backbone(x)
y = functional.adaptive_avg_pool2d(y[-1], (1, 1))
y = torch.flatten(y, 1)
y = self.proj_head(y)
n = y.shape[0]
y_reshaped = y.reshape(n, 197, 1024)
return {
"x_norm_clstoken": y_reshaped[:, 0], # teacher 128x1024
"x_norm_regtokens": y_reshaped[:, 1 : self.num_register_tokens + 1], # teacher 128x0x1024
"x_norm_patchtokens": y_reshaped[:, self.num_register_tokens + 1 :], # teacher 128x196x1024
"x_prenorm": None,
"masks": masks,
}
def forward(self, x, *args, masks=None, **kwargs):
if isinstance(x, list):
return [self.forward_backbone(_x, _masks) for _x, _masks in zip(x, masks)]
return self.forward_backbone(x, masks)

View File

@ -212,14 +212,14 @@ class DinoVisionTransformer(nn.Module):
def prepare_tokens_with_masks(self, x, masks=None):
B, nc, w, h = x.shape
x = self.patch_embed(x)
x = self.patch_embed(x) # teacher 128x3x224x224 -> 128x196x1024
if masks is not None:
x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
x = x + self.interpolate_pos_encoding(x, w, h)
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) # teacher 128x197x1024
x = x + self.interpolate_pos_encoding(x, w, h) # teacher 128x197x1024
if self.register_tokens is not None:
if self.register_tokens is not None: # self.register_tokens is None
x = torch.cat(
(
x[:, :1],
@ -232,9 +232,9 @@ class DinoVisionTransformer(nn.Module):
return x
def forward_features_list(self, x_list, masks_list):
x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)] # student 128x3x224x224 -> 128x197x1024, 512x3x96x96 -> 512x37x1024
for blk in self.blocks:
x = blk(x)
x = blk(x) # student 128x197x1024, 512x37x1024
all_x = x
output = []
@ -242,30 +242,30 @@ class DinoVisionTransformer(nn.Module):
x_norm = self.norm(x)
output.append(
{
"x_norm_clstoken": x_norm[:, 0],
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
"x_prenorm": x,
"masks": masks,
"x_norm_clstoken": x_norm[:, 0], # student 128x1024, 512x1024
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1], # student 128x0x1024, 512x0x1024
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :], # student 128x196x1024, 512x36x1024
"x_prenorm": x, # student 128x197x1024, 512x37x1024
"masks": masks, # student 128x196, None
}
)
return output
def forward_features(self, x, masks=None):
if isinstance(x, list):
if isinstance(x, list): # student x [128x3x224x224, 512x3x96x96], masks [128x196, None]
return self.forward_features_list(x, masks)
x = self.prepare_tokens_with_masks(x, masks)
x = self.prepare_tokens_with_masks(x, masks) # teacher 128x3x224x224 -> 128x197x1024
for blk in self.blocks:
x = blk(x)
x = blk(x) # teacher 128x197x1024
x_norm = self.norm(x)
x_norm = self.norm(x) # teacher 128x197x1024
return {
"x_norm_clstoken": x_norm[:, 0],
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
"x_prenorm": x,
"x_norm_clstoken": x_norm[:, 0], # teacher 128x1024
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1], # teacher 128x0x1024
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :], # teacher 128x196x1024
"x_prenorm": x, # teacher 128x197x1024
"masks": masks,
}

View File

@ -9,7 +9,7 @@ import os
from pathlib import Path
from typing import List, Optional
import submitit
# import submitit
from dinov2.utils.cluster import (
get_slurm_executor_parameters,
@ -61,16 +61,10 @@ def get_args_parser(
help="Partition where to submit",
)
parser.add_argument(
"--mem-per-gpu",
default="60G",
type=str,
help="Memory per GPU",
"--use-volta32",
action="store_true",
help="Request V100-32GB GPUs",
)
# parser.add_argument(
# "--use-volta32",
# action="store_true",
# help="Request V100-32GB GPUs",
# )
parser.add_argument(
"--comment",
default="",
@ -103,8 +97,8 @@ def submit_jobs(task_class, args, name: str):
executor = submitit.AutoExecutor(folder=args.output_dir, slurm_max_num_timeout=30)
kwargs = {}
# if args.use_volta32:
# kwargs["slurm_constraint"] = "volta32gb"
if args.use_volta32:
kwargs["slurm_constraint"] = "volta32gb"
if args.comment:
kwargs["slurm_comment"] = args.comment
if args.exclude:
@ -116,11 +110,10 @@ def submit_jobs(task_class, args, name: str):
timeout_min=args.timeout, # max is 60 * 72
slurm_signal_delay_s=120,
slurm_partition=args.partition,
mem_per_gpu=args.mem_per_gpu,
**kwargs,
)
executor.update_parameters(name=name, **executor_params)
print(args, executor_params)
task = task_class(args)
job = executor.submit(task)

View File

@ -9,7 +9,8 @@ import sys
from dinov2.logging import setup_logging
from dinov2.train import get_args_parser as get_train_args_parser
from dinov2.run.submit import get_args_parser, submit_jobs
# from dinov2.run.submit import get_args_parser, submit_jobs
from dinov2.run.submit import get_args_parser
logger = logging.getLogger("dinov2")
@ -22,7 +23,7 @@ class Trainer(object):
def __call__(self):
from dinov2.train import main as train_main
self._setup_args()
# self._setup_args()
train_main(self.args)
def checkpoint(self):
@ -51,7 +52,13 @@ def main():
setup_logging()
assert os.path.exists(args.config_file), "Configuration file does not exist!"
submit_jobs(Trainer, args, name="dinov2:train")
print(args)
# submit_jobs(Trainer, args, name="dinov2:train")
from dinov2.train import main as train_main
train_main(args)
return 0

View File

@ -1,431 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from functools import partial
import logging
import copy
import torch
from torch import nn
from dinov2.loss import DINOLoss, iBOTPatchLoss, KoLeoLoss
from dinov2.models import build_model
from dinov2.layers import DINOHead
from dinov2.utils.utils import has_batchnorms
from dinov2.utils.param_groups import get_params_groups_with_decay, fuse_params_groups
from dinov2.fsdp import get_fsdp_wrapper, ShardedGradScaler, get_fsdp_modules, reshard_fsdp_model
from dinov2.models.vision_transformer import BlockChunk
try:
from xformers.ops import fmha
XFORMERS_AVAILABLE = True
except ImportError:
XFORMERS_AVAILABLE = False
assert XFORMERS_AVAILABLE, "xFormers is required for DINOv2 training"
logger = logging.getLogger("dinov2")
class DistillMetaArch(nn.Module):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
self.fp16_scaler = ShardedGradScaler() if cfg.compute_precision.grad_scaler else None
student_model_dict = dict()
teacher_model_dict = dict()
student_backbone, student_embed_dim = build_model(cfg.student, only_teacher=True, img_size=cfg.crops.global_crops_size) # pyright: ignore
teacher_backbone, teacher_embed_dim = build_model(cfg.teacher, only_teacher=True, img_size=cfg.crops.global_crops_size) # pyright: ignore
student_model_dict["backbone"] = student_backbone
teacher_model_dict["backbone"] = teacher_backbone
# Student and teacher embedding dimensions can be different and therefore DINO head and IBOT heads should be different
logger.info(f"OPTIONS -- architecture : student_embed_dim: {student_embed_dim}")
logger.info(f"OPTIONS -- architecture : teacher_embed_dim: {teacher_embed_dim}")
self.student_embed_dim = student_embed_dim
self.teacher_embed_dim = teacher_embed_dim
self.dino_out_dim = cfg.dino.head_n_prototypes
self.do_dino = cfg.dino.loss_weight > 0
self.do_koleo = cfg.dino.koleo_loss_weight > 0
self.do_ibot = cfg.ibot.loss_weight > 0
self.ibot_separate_head = cfg.ibot.separate_head
logger.info("OPTIONS -- DINO")
if self.do_dino:
logger.info(f"OPTIONS -- DINO -- loss_weight: {cfg.dino.loss_weight}")
logger.info(f"OPTIONS -- DINO -- head_n_prototypes: {cfg.dino.head_n_prototypes}")
logger.info(f"OPTIONS -- DINO -- head_bottleneck_dim: {cfg.dino.head_bottleneck_dim}")
logger.info(f"OPTIONS -- DINO -- head_hidden_dim: {cfg.dino.head_hidden_dim}")
self.dino_loss_weight = cfg.dino.loss_weight
dino_head = partial(
DINOHead,
out_dim=cfg.dino.head_n_prototypes,
hidden_dim=cfg.dino.head_hidden_dim,
bottleneck_dim=cfg.dino.head_bottleneck_dim,
nlayers=cfg.dino.head_nlayers,
)
self.dino_loss = DINOLoss(self.dino_out_dim)
if self.do_koleo:
logger.info("OPTIONS -- DINO -- applying KOLEO regularization")
self.koleo_loss = KoLeoLoss()
else:
logger.info("OPTIONS -- DINO -- not using DINO")
if self.do_dino or self.do_ibot:
student_model_dict["dino_head"] = dino_head(in_dim=student_embed_dim) # pyright: ignore
teacher_model_dict["dino_head"] = dino_head(in_dim=teacher_embed_dim) # pyright: ignore
logger.info("OPTIONS -- IBOT")
logger.info(f"OPTIONS -- IBOT -- loss_weight: {cfg.ibot.loss_weight}")
logger.info(f"OPTIONS -- IBOT masking -- ibot_mask_ratio_tuple: {cfg.ibot.mask_ratio_min_max}")
logger.info(f"OPTIONS -- IBOT masking -- ibot_mask_sample_probability: {cfg.ibot.mask_sample_probability}")
if self.do_ibot:
self.ibot_loss_weight = cfg.ibot.loss_weight
assert max(cfg.ibot.mask_ratio_min_max) > 0, "please provide a positive mask ratio tuple for ibot"
assert cfg.ibot.mask_sample_probability > 0, "please provide a positive mask probability for ibot"
self.ibot_out_dim = cfg.ibot.head_n_prototypes if self.ibot_separate_head else cfg.dino.head_n_prototypes
self.ibot_patch_loss = iBOTPatchLoss(self.ibot_out_dim)
if self.ibot_separate_head:
logger.info(f"OPTIONS -- IBOT -- loss_weight: {cfg.ibot.loss_weight}")
logger.info(f"OPTIONS -- IBOT -- head_n_prototypes: {cfg.ibot.head_n_prototypes}")
logger.info(f"OPTIONS -- IBOT -- head_bottleneck_dim: {cfg.ibot.head_bottleneck_dim}")
logger.info(f"OPTIONS -- IBOT -- head_hidden_dim: {cfg.ibot.head_hidden_dim}")
ibot_head = partial(
DINOHead,
out_dim=cfg.ibot.head_n_prototypes,
hidden_dim=cfg.ibot.head_hidden_dim,
bottleneck_dim=cfg.ibot.head_bottleneck_dim,
nlayers=cfg.ibot.head_nlayers,
)
student_model_dict["ibot_head"] = ibot_head(in_dim=student_embed_dim)
teacher_model_dict["ibot_head"] = ibot_head(in_dim=teacher_embed_dim)
else:
logger.info("OPTIONS -- IBOT -- head shared with DINO")
# self.need_to_synchronize_fsdp_streams = True
self.student = nn.ModuleDict(student_model_dict)
self.teacher = nn.ModuleDict(teacher_model_dict)
self.student_shadow = copy.deepcopy(self.student)
assert cfg.teacher.pretrained_weights is not None, "Must contain pretrained weights for distillation."
chkpt = torch.load(cfg.teacher.pretrained_weights)
logger.info(f"OPTIONS -- pretrained weights: loading from {cfg.teacher.pretrained_weights}")
self.teacher.load_state_dict(chkpt["model"], strict=False)
# there is no backpropagation through the teacher, so no need for gradients
for p in self.teacher.parameters():
p.requires_grad = False
# there is no backpropagation through the shadow copy either
for p in self.student_shadow.parameters():
p.requires_grad = False
logger.info(f"Student is built: it is using {cfg.student.arch}")
logger.info(f"Teacher is built: it is using {cfg.teacher.arch}")
def forward(self, inputs):
raise NotImplementedError
def backprop_loss(self, loss):
if self.fp16_scaler is not None:
self.fp16_scaler.scale(loss).backward() # pyright: ignore
else:
loss.backward()
def forward_backward(self, images, teacher_temp):
n_global_crops = 2
assert n_global_crops == 2
n_local_crops = self.cfg.crops.local_crops_number
global_crops = images["collated_global_crops"].cuda(non_blocking=True)
local_crops = images["collated_local_crops"].cuda(non_blocking=True)
masks = images["collated_masks"].cuda(non_blocking=True)
mask_indices_list = images["mask_indices_list"].cuda(non_blocking=True)
n_masked_patches_tensor = images["n_masked_patches"].cuda(non_blocking=True)
n_masked_patches = mask_indices_list.shape[0]
upperbound = images["upperbound"]
masks_weight = images["masks_weight"].cuda(non_blocking=True)
n_local_crops_loss_terms = max(n_local_crops * n_global_crops, 1)
n_global_crops_loss_terms = (n_global_crops - 1) * n_global_crops
do_dino = self.do_dino
do_ibot = self.do_ibot
# loss scales
ibot_loss_scale = 1.0 / n_global_crops
# teacher output
@torch.no_grad()
def get_teacher_output():
x, n_global_crops_teacher = global_crops, n_global_crops
teacher_backbone_output_dict = self.teacher.backbone(x, is_training=True) # pyright: ignore
teacher_cls_tokens = teacher_backbone_output_dict["x_norm_clstoken"]
teacher_cls_tokens = teacher_cls_tokens.chunk(n_global_crops_teacher)
# watch out: these are chunked and cat'd in reverse so A is matched to B in the global crops dino loss
teacher_cls_tokens = torch.cat((teacher_cls_tokens[1], teacher_cls_tokens[0]))
ibot_teacher_patch_tokens = teacher_backbone_output_dict["x_norm_patchtokens"]
_dim = ibot_teacher_patch_tokens.shape[-1]
n_cls_tokens = teacher_cls_tokens.shape[0]
if do_ibot and not self.ibot_separate_head:
buffer_tensor_teacher = ibot_teacher_patch_tokens.new_zeros(upperbound + n_cls_tokens, _dim)
buffer_tensor_teacher[:n_cls_tokens].copy_(teacher_cls_tokens)
torch.index_select(
ibot_teacher_patch_tokens.flatten(0, 1),
dim=0,
index=mask_indices_list,
out=buffer_tensor_teacher[n_cls_tokens : n_cls_tokens + n_masked_patches],
)
tokens_after_head = self.teacher.dino_head(buffer_tensor_teacher)
teacher_cls_tokens_after_head = tokens_after_head[:n_cls_tokens]
masked_teacher_patch_tokens_after_head = tokens_after_head[
n_cls_tokens : n_cls_tokens + n_masked_patches
]
elif do_ibot and self.ibot_separate_head:
buffer_tensor_teacher = ibot_teacher_patch_tokens.new_zeros(upperbound, _dim)
torch.index_select(
ibot_teacher_patch_tokens.flatten(0, 1),
dim=0,
index=mask_indices_list,
out=buffer_tensor_teacher[:n_masked_patches],
)
teacher_cls_tokens_after_head = self.teacher.dino_head(teacher_cls_tokens)
masked_teacher_patch_tokens_after_head = self.teacher.ibot_head(buffer_tensor_teacher)[
:n_masked_patches
]
else:
teacher_cls_tokens_after_head = self.teacher.dino_head(teacher_cls_tokens)
masked_teacher_ibot_softmaxed_centered = None
if self.cfg.train.centering == "centering":
teacher_dino_softmaxed_centered_list = self.dino_loss.softmax_center_teacher(
teacher_cls_tokens_after_head, teacher_temp=teacher_temp
).view(n_global_crops_teacher, -1, *teacher_cls_tokens_after_head.shape[1:])
self.dino_loss.update_center(teacher_cls_tokens_after_head)
if do_ibot:
masked_teacher_patch_tokens_after_head = masked_teacher_patch_tokens_after_head.unsqueeze(0)
masked_teacher_ibot_softmaxed_centered = self.ibot_patch_loss.softmax_center_teacher(
masked_teacher_patch_tokens_after_head[:, :n_masked_patches], teacher_temp=teacher_temp
)
masked_teacher_ibot_softmaxed_centered = masked_teacher_ibot_softmaxed_centered.squeeze(0)
self.ibot_patch_loss.update_center(masked_teacher_patch_tokens_after_head[:n_masked_patches])
elif self.cfg.train.centering == "sinkhorn_knopp":
teacher_dino_softmaxed_centered_list = self.dino_loss.sinkhorn_knopp_teacher(
teacher_cls_tokens_after_head, teacher_temp=teacher_temp
).view(n_global_crops_teacher, -1, *teacher_cls_tokens_after_head.shape[1:])
if do_ibot:
masked_teacher_ibot_softmaxed_centered = self.ibot_patch_loss.sinkhorn_knopp_teacher(
masked_teacher_patch_tokens_after_head,
teacher_temp=teacher_temp,
n_masked_patches_tensor=n_masked_patches_tensor,
)
else:
raise NotImplementedError
return teacher_dino_softmaxed_centered_list, masked_teacher_ibot_softmaxed_centered
teacher_dino_softmaxed_centered_list, masked_teacher_ibot_softmaxed_centered = get_teacher_output()
reshard_fsdp_model(self.teacher)
loss_dict = {}
loss_accumulator = 0 # for backprop
student_global_backbone_output_dict, student_local_backbone_output_dict = self.student.backbone(
[global_crops, local_crops], masks=[masks, None], is_training=True
)
inputs_for_student_head_list = []
# 1a: local crops cls tokens
student_local_cls_tokens = student_local_backbone_output_dict["x_norm_clstoken"]
inputs_for_student_head_list.append(student_local_cls_tokens.unsqueeze(0))
# 1b: global crops cls tokens
student_global_cls_tokens = student_global_backbone_output_dict["x_norm_clstoken"]
inputs_for_student_head_list.append(student_global_cls_tokens.unsqueeze(0))
# 1c: global crops patch tokens
if do_ibot:
_dim = student_global_backbone_output_dict["x_norm_clstoken"].shape[-1]
ibot_student_patch_tokens = student_global_backbone_output_dict["x_norm_patchtokens"]
buffer_tensor_patch_tokens = ibot_student_patch_tokens.new_zeros(upperbound, _dim)
buffer_tensor_patch_tokens[:n_masked_patches].copy_(
torch.index_select(ibot_student_patch_tokens.flatten(0, 1), dim=0, index=mask_indices_list)
)
if not self.ibot_separate_head:
inputs_for_student_head_list.append(buffer_tensor_patch_tokens.unsqueeze(0))
else:
student_global_masked_patch_tokens_after_head = self.student.ibot_head(buffer_tensor_patch_tokens)[
:n_masked_patches
]
# 2: run
_attn_bias, cat_inputs = fmha.BlockDiagonalMask.from_tensor_list(inputs_for_student_head_list)
outputs_list = _attn_bias.split(self.student.dino_head(cat_inputs))
# 3a: local crops cls tokens
student_local_cls_tokens_after_head = outputs_list.pop(0).squeeze(0)
# 3b: global crops cls tokens
student_global_cls_tokens_after_head = outputs_list.pop(0).squeeze(0)
# 3c: global crops patch tokens
if do_ibot and not self.ibot_separate_head:
student_global_masked_patch_tokens_after_head = outputs_list.pop(0).squeeze(0)[:n_masked_patches]
if n_local_crops > 0:
dino_local_crops_loss = self.dino_loss(
student_output_list=student_local_cls_tokens_after_head.chunk(n_local_crops),
teacher_out_softmaxed_centered_list=teacher_dino_softmaxed_centered_list,
) / (n_global_crops_loss_terms + n_local_crops_loss_terms)
# store for display
loss_dict["dino_local_crops_loss"] = dino_local_crops_loss
# accumulate loss
loss_accumulator += self.dino_loss_weight * dino_local_crops_loss
# process global crops
loss_scales = 2 # this is here since we process global crops together
if do_dino:
# compute loss
dino_global_crops_loss = (
self.dino_loss(
student_output_list=[student_global_cls_tokens_after_head],
teacher_out_softmaxed_centered_list=[
teacher_dino_softmaxed_centered_list.flatten(0, 1)
], # these were chunked and stacked in reverse so A is matched to B
)
* loss_scales
/ (n_global_crops_loss_terms + n_local_crops_loss_terms)
)
loss_dict["dino_global_crops_loss"] = dino_global_crops_loss
# accumulate loss
loss_accumulator += self.dino_loss_weight * dino_global_crops_loss
student_cls_tokens = student_global_cls_tokens
if self.do_koleo:
koleo_loss = self.cfg.dino.koleo_loss_weight * sum(
self.koleo_loss(p) for p in student_cls_tokens.chunk(2)
) # we don't apply koleo loss between cls tokens of a same image
loss_accumulator += koleo_loss
loss_dict["koleo_loss"] = (
koleo_loss / loss_scales
) # this is to display the same losses as before but we can remove eventually
if do_ibot:
# compute loss
ibot_patch_loss = (
self.ibot_patch_loss.forward_masked(
student_global_masked_patch_tokens_after_head,
masked_teacher_ibot_softmaxed_centered,
student_masks_flat=masks,
n_masked_patches=n_masked_patches,
masks_weight=masks_weight,
)
* loss_scales
* ibot_loss_scale
)
# store for display
loss_dict["ibot_loss"] = ibot_patch_loss / 2
# accumulate loss
loss_accumulator += self.ibot_loss_weight * ibot_patch_loss
self.backprop_loss(loss_accumulator)
# self.fsdp_synchronize_streams()
return loss_dict
# def fsdp_synchronize_streams(self):
# if self.need_to_synchronize_fsdp_streams:
# torch.cuda.synchronize()
# self.student.dino_head._streams = (
# self.teacher.dino_head._streams
# ) = self.student.backbone._streams = self.teacher.backbone._streams
# self.need_to_synchronize_fsdp_streams = False
# def update_teacher(self, m):
# student_param_list = []
# teacher_param_list = []
# with torch.no_grad():
# for k in self.student.keys():
# for ms, mt in zip(get_fsdp_modules(self.student[k]), get_fsdp_modules(self.teacher[k])):
# student_param_list += ms.params
# teacher_param_list += mt.params
# torch._foreach_mul_(teacher_param_list, m)
# torch._foreach_add_(teacher_param_list, student_param_list, alpha=1 - m)
def update_student_shadow(self, m):
student_param_list = []
student_shadow_param_list = []
with torch.no_grad():
for k in self.student.keys():
for ms, mss in zip(get_fsdp_modules(self.student[k]), get_fsdp_modules(self.student_shadow[k])):
student_param_list += ms.params
student_shadow_param_list += mss.params
torch._foreach_mul_(student_shadow_param_list, m)
torch._foreach_add_(student_shadow_param_list, student_param_list, alpha=1 - m)
def train(self):
super().train()
self.teacher.eval()
self.student_shadow.eval()
def get_maybe_fused_params_for_submodel(self, m):
params_groups = get_params_groups_with_decay(
model=m,
lr_decay_rate=self.cfg.optim.layerwise_decay,
patch_embed_lr_mult=self.cfg.optim.patch_embed_lr_mult,
)
fused_params_groups = fuse_params_groups(params_groups)
logger.info("fusing param groups")
for g in fused_params_groups:
g["foreach"] = True
return fused_params_groups
def get_params_groups(self):
all_params_groups = []
for m in self.student.values():
all_params_groups += self.get_maybe_fused_params_for_submodel(m)
return all_params_groups
def prepare_for_distributed_training(self):
logger.info("DISTRIBUTED FSDP -- preparing model for distributed training")
if has_batchnorms(self.student):
raise NotImplementedError
# below will synchronize all student subnetworks across gpus:
for k, v in self.student.items():
self.student_shadow[k].load_state_dict(self.student[k].state_dict())
# self.teacher[k].load_state_dict(self.student[k].state_dict())
student_model_cfg = self.cfg.compute_precision.student[k]
self.student[k] = get_fsdp_wrapper(student_model_cfg, modules_to_wrap={BlockChunk})(self.student[k])
for k, v in self.teacher.items():
teacher_model_cfg = self.cfg.compute_precision.teacher[k]
self.teacher[k] = get_fsdp_wrapper(teacher_model_cfg, modules_to_wrap={BlockChunk})(self.teacher[k])

View File

@ -37,7 +37,7 @@ class SSLMetaArch(nn.Module):
student_model_dict = dict()
teacher_model_dict = dict()
student_backbone, teacher_backbone, embed_dim = build_model_from_cfg(cfg)
student_backbone, teacher_backbone, embed_dim = build_model_from_cfg(cfg) # embed_dim=1024
student_model_dict["backbone"] = student_backbone
teacher_model_dict["backbone"] = teacher_backbone
logger.info(f"OPTIONS -- architecture : embed_dim: {embed_dim}")
@ -47,13 +47,13 @@ class SSLMetaArch(nn.Module):
logger.info(f"OPTIONS -- pretrained weights: loading from {cfg.student.pretrained_weights}")
student_backbone.load_state_dict(chkpt["model"], strict=False)
self.embed_dim = embed_dim
self.dino_out_dim = cfg.dino.head_n_prototypes
self.embed_dim = embed_dim # 1024
self.dino_out_dim = cfg.dino.head_n_prototypes # 65536
self.do_dino = cfg.dino.loss_weight > 0
self.do_koleo = cfg.dino.koleo_loss_weight > 0
self.do_ibot = cfg.ibot.loss_weight > 0
self.ibot_separate_head = cfg.ibot.separate_head
self.do_dino = cfg.dino.loss_weight > 0 # True
self.do_koleo = cfg.dino.koleo_loss_weight > 0 # True
self.do_ibot = cfg.ibot.loss_weight > 0 # True
self.ibot_separate_head = cfg.ibot.separate_head # False
logger.info("OPTIONS -- DINO")
if self.do_dino:
@ -81,7 +81,7 @@ class SSLMetaArch(nn.Module):
if self.do_dino or self.do_ibot:
student_model_dict["dino_head"] = dino_head()
teacher_model_dict["dino_head"] = dino_head()
logger.info("OPTIONS -- IBOT")
logger.info(f"OPTIONS -- IBOT -- loss_weight: {cfg.ibot.loss_weight}")
logger.info(f"OPTIONS -- IBOT masking -- ibot_mask_ratio_tuple: {cfg.ibot.mask_ratio_min_max}")
@ -134,18 +134,18 @@ class SSLMetaArch(nn.Module):
assert n_global_crops == 2
n_local_crops = self.cfg.crops.local_crops_number
global_crops = images["collated_global_crops"].cuda(non_blocking=True)
local_crops = images["collated_local_crops"].cuda(non_blocking=True)
global_crops = images["collated_global_crops"].cuda(non_blocking=True) # 128x3x224x224
local_crops = images["collated_local_crops"].cuda(non_blocking=True) # 512x3x96x96
masks = images["collated_masks"].cuda(non_blocking=True)
mask_indices_list = images["mask_indices_list"].cuda(non_blocking=True)
n_masked_patches_tensor = images["n_masked_patches"].cuda(non_blocking=True)
n_masked_patches = mask_indices_list.shape[0]
upperbound = images["upperbound"]
masks_weight = images["masks_weight"].cuda(non_blocking=True)
masks = images["collated_masks"].cuda(non_blocking=True) # 128x196
mask_indices_list = images["mask_indices_list"].cuda(non_blocking=True) # 3730x
n_masked_patches_tensor = images["n_masked_patches"].cuda(non_blocking=True) # 1x
n_masked_patches = mask_indices_list.shape[0] # 3730
upperbound = images["upperbound"] # 3771
masks_weight = images["masks_weight"].cuda(non_blocking=True) # 3730x
n_local_crops_loss_terms = max(n_local_crops * n_global_crops, 1)
n_global_crops_loss_terms = (n_global_crops - 1) * n_global_crops
n_local_crops_loss_terms = max(n_local_crops * n_global_crops, 1) # 16
n_global_crops_loss_terms = (n_global_crops - 1) * n_global_crops # 2
do_dino = self.do_dino
do_ibot = self.do_ibot
@ -226,7 +226,7 @@ class SSLMetaArch(nn.Module):
return teacher_dino_softmaxed_centered_list, masked_teacher_ibot_softmaxed_centered
teacher_dino_softmaxed_centered_list, masked_teacher_ibot_softmaxed_centered = get_teacher_output()
teacher_dino_softmaxed_centered_list, masked_teacher_ibot_softmaxed_centered = get_teacher_output() # [64x65536, 64x65536], 3730x65536
reshard_fsdp_model(self.teacher)
loss_dict = {}

View File

@ -22,6 +22,10 @@ from dinov2.utils.utils import CosineScheduler
from dinov2.train.ssl_meta_arch import SSLMetaArch
import sys
sys.path.append('/home/li.yu/code/JupiterCVML/europa/base/src/europa')
from dl.network.nextvit_brt import _get_nextvit
torch.backends.cuda.matmul.allow_tf32 = True # PyTorch 1.12 sets this to False by default
logger = logging.getLogger("dinov2")
@ -54,6 +58,9 @@ For python-based LazyConfig, use "path.key=value".
type=str,
help="Output directory to save logs and checkpoints",
)
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
@ -133,7 +140,7 @@ def do_test(cfg, model, iteration):
def do_train(cfg, model, resume=False):
model.train()
inputs_dtype = torch.half
inputs_dtype = torch.half # torch.float16
fp16_scaler = model.fp16_scaler # for mixed precision training
# setup optimizer
@ -152,8 +159,8 @@ def do_train(cfg, model, resume=False):
start_iter = checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1
OFFICIAL_EPOCH_LENGTH = cfg.train.OFFICIAL_EPOCH_LENGTH
max_iter = cfg.optim.epochs * OFFICIAL_EPOCH_LENGTH
OFFICIAL_EPOCH_LENGTH = cfg.train.OFFICIAL_EPOCH_LENGTH # 1250
max_iter = cfg.optim.epochs * OFFICIAL_EPOCH_LENGTH # 125000
periodic_checkpointer = PeriodicCheckpointer(
checkpointer,
@ -164,9 +171,9 @@ def do_train(cfg, model, resume=False):
# setup data preprocessing
img_size = cfg.crops.global_crops_size
patch_size = cfg.student.patch_size
n_tokens = (img_size // patch_size) ** 2
img_size = cfg.crops.global_crops_size # 224
patch_size = cfg.student.patch_size # 16
n_tokens = (img_size // patch_size) ** 2 # 196
mask_generator = MaskingGenerator(
input_size=(img_size // patch_size, img_size // patch_size),
max_num_patches=0.5 * img_size // patch_size * img_size // patch_size,
@ -300,6 +307,18 @@ def main(args):
model = SSLMetaArch(cfg).to(torch.device("cuda"))
model.prepare_for_distributed_training()
# model = _get_nextvit(
# model_size="small",
# frozen_stages=-1,
# norm_eval=False,
# with_extra_norm=True,
# norm_cfg=dict(type="SyncBN", requires_grad=True),
# in_channels=3,
# )
# print('tunable parameters', sum(p.numel() for p in model.parameters() if p.requires_grad))
# if args.distributed:
# model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
logger.info("Model:\n{}".format(model))
if args.eval_only:
iteration = (

View File

@ -1,319 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import logging
import math
import os
from functools import partial
from fvcore.common.checkpoint import PeriodicCheckpointer
import torch
from dinov2.data import SamplerType, make_data_loader, make_dataset
from dinov2.data import collate_data_and_cast, DataAugmentationDINO, MaskingGenerator
import dinov2.distributed as distributed
from dinov2.fsdp import FSDPCheckpointer
from dinov2.logging import MetricLogger
from dinov2.utils.config import setup
from dinov2.utils.utils import CosineScheduler
from dinov2.train.distill_meta_arch import DistillMetaArch
torch.backends.cuda.matmul.allow_tf32 = True # PyTorch 1.12 sets this to False by default
logger = logging.getLogger("dinov2")
def get_args_parser(add_help: bool = True):
parser = argparse.ArgumentParser("DINOv2 training", add_help=add_help)
parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file")
parser.add_argument(
"--no-resume",
action="store_true",
help="Whether to not attempt to resume from the checkpoint directory. ",
)
parser.add_argument("--eval-only", action="store_true", help="perform evaluation only")
parser.add_argument("--eval", type=str, default="", help="Eval type to perform")
parser.add_argument(
"opts",
help="""
Modify config options at the end of the command. For Yacs configs, use
space-separated "PATH.KEY VALUE" pairs.
For python-based LazyConfig, use "path.key=value".
""".strip(),
default=None,
nargs=argparse.REMAINDER,
)
parser.add_argument(
"--output-dir",
"--output_dir",
default="",
type=str,
help="Output directory to save logs and checkpoints",
)
return parser
def build_optimizer(cfg, params_groups):
return torch.optim.AdamW(params_groups, betas=(cfg.optim.adamw_beta1, cfg.optim.adamw_beta2))
def build_schedulers(cfg):
OFFICIAL_EPOCH_LENGTH = cfg.train.OFFICIAL_EPOCH_LENGTH
lr = dict(
base_value=cfg.optim["lr"],
final_value=cfg.optim["min_lr"],
total_iters=cfg.optim["epochs"] * OFFICIAL_EPOCH_LENGTH,
warmup_iters=cfg.optim["warmup_epochs"] * OFFICIAL_EPOCH_LENGTH,
start_warmup_value=0,
)
wd = dict(
base_value=cfg.optim["weight_decay"],
final_value=cfg.optim["weight_decay_end"],
total_iters=cfg.optim["epochs"] * OFFICIAL_EPOCH_LENGTH,
)
momentum = dict(
base_value=cfg.teacher["momentum_teacher"],
final_value=cfg.teacher["final_momentum_teacher"],
total_iters=cfg.optim["epochs"] * OFFICIAL_EPOCH_LENGTH,
)
teacher_temp = dict(
base_value=cfg.teacher["teacher_temp"],
final_value=cfg.teacher["teacher_temp"],
total_iters=cfg.teacher["warmup_teacher_temp_epochs"] * OFFICIAL_EPOCH_LENGTH,
warmup_iters=cfg.teacher["warmup_teacher_temp_epochs"] * OFFICIAL_EPOCH_LENGTH,
start_warmup_value=cfg.teacher["warmup_teacher_temp"],
)
lr_schedule = CosineScheduler(**lr)
wd_schedule = CosineScheduler(**wd)
momentum_schedule = CosineScheduler(**momentum)
teacher_temp_schedule = CosineScheduler(**teacher_temp)
last_layer_lr_schedule = CosineScheduler(**lr)
last_layer_lr_schedule.schedule[
: cfg.optim["freeze_last_layer_epochs"] * OFFICIAL_EPOCH_LENGTH
] = 0 # mimicking the original schedules
logger.info("Schedulers ready.")
return (
lr_schedule,
wd_schedule,
momentum_schedule,
teacher_temp_schedule,
last_layer_lr_schedule,
)
def apply_optim_scheduler(optimizer, lr, wd, last_layer_lr):
for param_group in optimizer.param_groups:
is_last_layer = param_group["is_last_layer"]
lr_multiplier = param_group["lr_multiplier"]
wd_multiplier = param_group["wd_multiplier"]
param_group["weight_decay"] = wd * wd_multiplier
param_group["lr"] = (last_layer_lr if is_last_layer else lr) * lr_multiplier
def do_test(cfg, model, iteration):
new_state_dict = model.teacher.state_dict()
if distributed.is_main_process():
iterstring = str(iteration)
eval_dir = os.path.join(cfg.train.output_dir, "eval", iterstring)
os.makedirs(eval_dir, exist_ok=True)
# save teacher checkpoint
teacher_ckp_path = os.path.join(eval_dir, "teacher_checkpoint.pth")
torch.save({"teacher": new_state_dict}, teacher_ckp_path)
def do_train(cfg, model, resume=False):
model.train()
inputs_dtype = torch.half
fp16_scaler = model.fp16_scaler # for mixed precision training
# setup optimizer
optimizer = build_optimizer(cfg, model.get_params_groups())
(
lr_schedule,
wd_schedule,
momentum_schedule,
teacher_temp_schedule,
last_layer_lr_schedule,
) = build_schedulers(cfg)
# checkpointer
checkpointer = FSDPCheckpointer(model, cfg.train.output_dir, optimizer=optimizer, save_to_disk=True)
start_iter = checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1
OFFICIAL_EPOCH_LENGTH = cfg.train.OFFICIAL_EPOCH_LENGTH
max_iter = cfg.optim.epochs * OFFICIAL_EPOCH_LENGTH
periodic_checkpointer = PeriodicCheckpointer(
checkpointer,
period=3 * OFFICIAL_EPOCH_LENGTH,
max_iter=max_iter,
max_to_keep=3,
)
# setup data preprocessing
img_size = cfg.crops.global_crops_size
patch_size = cfg.student.patch_size
n_tokens = (img_size // patch_size) ** 2
mask_generator = MaskingGenerator(
input_size=(img_size // patch_size, img_size // patch_size),
max_num_patches=0.5 * img_size // patch_size * img_size // patch_size,
)
data_transform = DataAugmentationDINO(
cfg.crops.global_crops_scale,
cfg.crops.local_crops_scale,
cfg.crops.local_crops_number,
global_crops_size=cfg.crops.global_crops_size,
local_crops_size=cfg.crops.local_crops_size,
)
collate_fn = partial(
collate_data_and_cast,
mask_ratio_tuple=cfg.ibot.mask_ratio_min_max,
mask_probability=cfg.ibot.mask_sample_probability,
n_tokens=n_tokens,
mask_generator=mask_generator,
dtype=inputs_dtype,
)
# setup data loader
dataset = make_dataset(
dataset_str=cfg.train.dataset_path,
transform=data_transform,
target_transform=lambda _: (),
)
# sampler_type = SamplerType.INFINITE
sampler_type = SamplerType.SHARDED_INFINITE
data_loader = make_data_loader(
dataset=dataset,
batch_size=cfg.train.batch_size_per_gpu,
num_workers=cfg.train.num_workers,
shuffle=True,
seed=start_iter, # TODO: Fix this -- cfg.train.seed
sampler_type=sampler_type,
sampler_advance=0, # TODO(qas): fix this -- start_iter * cfg.train.batch_size_per_gpu,
drop_last=True,
collate_fn=collate_fn,
)
# training loop
iteration = start_iter
logger.info("Starting training from iteration {}".format(start_iter))
metrics_file = os.path.join(cfg.train.output_dir, "training_metrics.json")
metric_logger = MetricLogger(delimiter=" ", output_file=metrics_file)
header = "Training"
for data in metric_logger.log_every(
data_loader,
10,
header,
max_iter,
start_iter,
):
current_batch_size = data["collated_global_crops"].shape[0] / 2
if iteration > max_iter:
return
# apply schedules
lr = lr_schedule[iteration]
wd = wd_schedule[iteration]
mom = momentum_schedule[iteration]
teacher_temp = teacher_temp_schedule[iteration]
last_layer_lr = last_layer_lr_schedule[iteration]
apply_optim_scheduler(optimizer, lr, wd, last_layer_lr)
# compute losses
optimizer.zero_grad(set_to_none=True)
loss_dict = model.forward_backward(data, teacher_temp=teacher_temp)
# clip gradients
if fp16_scaler is not None:
if cfg.optim.clip_grad:
fp16_scaler.unscale_(optimizer)
for v in model.student.values():
v.clip_grad_norm_(cfg.optim.clip_grad)
fp16_scaler.step(optimizer)
fp16_scaler.update()
else:
if cfg.optim.clip_grad:
for v in model.student.values():
v.clip_grad_norm_(cfg.optim.clip_grad)
optimizer.step()
# perform teacher EMA update
model.update_student_shadow(mom)
# logging
if distributed.get_global_size() > 1:
for v in loss_dict.values():
torch.distributed.all_reduce(v)
loss_dict_reduced = {k: v.item() / distributed.get_global_size() for k, v in loss_dict.items()}
if math.isnan(sum(loss_dict_reduced.values())):
logger.info("NaN detected")
raise AssertionError
losses_reduced = sum(loss for loss in loss_dict_reduced.values())
metric_logger.update(lr=lr)
metric_logger.update(wd=wd)
metric_logger.update(mom=mom)
metric_logger.update(last_layer_lr=last_layer_lr)
metric_logger.update(current_batch_size=current_batch_size)
metric_logger.update(total_loss=losses_reduced, **loss_dict_reduced)
# checkpointing and testing
if cfg.evaluation.eval_period_iterations > 0 and (iteration + 1) % cfg.evaluation.eval_period_iterations == 0:
do_test(cfg, model, f"training_{iteration}")
torch.cuda.synchronize()
periodic_checkpointer.step(iteration)
iteration = iteration + 1
metric_logger.synchronize_between_processes()
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
def main(args):
cfg = setup(args)
model = DistillMetaArch(cfg).to(torch.device("cuda"))
model.prepare_for_distributed_training()
logger.info("Model:\n{}".format(model))
if args.eval_only:
iteration = (
FSDPCheckpointer(model, save_dir=cfg.train.output_dir)
.resume_or_load(cfg.MODEL.WEIGHTS, resume=not args.no_resume)
.get("iteration", -1)
+ 1
)
return do_test(cfg, model, f"manual_{iteration}")
do_train(cfg, model, resume=not args.no_resume)
if __name__ == "__main__":
args = get_args_parser(add_help=True).parse_args()
main(args)

View File

@ -76,20 +76,20 @@ def get_slurm_executor_parameters(
) -> Dict[str, Any]:
# create default parameters
params = {
# "mem_gb": 0, # Requests all memory on a node, see https://slurm.schedmd.com/sbatch.html
"mem_gb": 0, # Requests all memory on a node, see https://slurm.schedmd.com/sbatch.html
"gpus_per_node": num_gpus_per_node,
"tasks_per_node": num_gpus_per_node, # one task per GPU
"cpus_per_gpu": 7,
"cpus_per_task": 10,
"nodes": nodes,
"slurm_partition": get_slurm_partition(cluster_type),
}
# apply cluster-specific adjustments
cluster_type = get_cluster_type(cluster_type)
if cluster_type == ClusterType.AWS:
params["cpus_per_gpu"] = 12
params["cpus_per_task"] = 12
del params["mem_gb"]
elif cluster_type == ClusterType.RSC:
params["cpus_per_gpu"] = 12
params["cpus_per_task"] = 12
# set additional parameters / apply overrides
params.update(kwargs)
return params

View File

@ -7,6 +7,7 @@ import math
import logging
import os
import torch
from omegaconf import OmegaConf
import dinov2.distributed as distributed
@ -46,6 +47,44 @@ def get_cfg_from_args(args):
return cfg
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def init_distributed_mode(args):
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK'])
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = args.rank % torch.cuda.device_count()
else:
print('Not using distributed mode')
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = 'nccl'
print('| distributed init (rank {}): {}'.format(
args.rank, args.dist_url), flush=True)
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
torch.distributed.barrier()
setup_for_distributed(args.rank == 0)
def default_setup(args):
distributed.enable(overwrite=True)
seed = getattr(args, "seed", 0)
@ -66,7 +105,8 @@ def setup(args):
"""
cfg = get_cfg_from_args(args)
os.makedirs(args.output_dir, exist_ok=True)
default_setup(args)
# default_setup(args)
init_distributed_mode(args)
apply_scaling_rules_to_cfg(cfg)
write_config(cfg, args.output_dir)
return cfg