Allow disabling xFormers via environment variable (#180)
Allow disabling the use of xFormers (for inference) by simply setting the XFORMERS_DISABLED environment variablepull/183/head
parent
be7e57252f
commit
ebc1cba109
|
@ -9,6 +9,8 @@
|
|||
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
|
||||
|
||||
import logging
|
||||
import os
|
||||
import warnings
|
||||
|
||||
from torch import Tensor
|
||||
from torch import nn
|
||||
|
@ -17,13 +19,19 @@ from torch import nn
|
|||
logger = logging.getLogger("dinov2")
|
||||
|
||||
|
||||
XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None
|
||||
try:
|
||||
from xformers.ops import memory_efficient_attention, unbind, fmha
|
||||
if XFORMERS_ENABLED:
|
||||
from xformers.ops import memory_efficient_attention, unbind
|
||||
|
||||
XFORMERS_AVAILABLE = True
|
||||
XFORMERS_AVAILABLE = True
|
||||
warnings.warn("xFormers is available (Attention)")
|
||||
else:
|
||||
warnings.warn("xFormers is disabled (Attention)")
|
||||
raise ImportError
|
||||
except ImportError:
|
||||
logger.warning("xFormers not available")
|
||||
XFORMERS_AVAILABLE = False
|
||||
warnings.warn("xFormers is not available (Attention)")
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
|
@ -65,7 +73,8 @@ class Attention(nn.Module):
|
|||
class MemEffAttention(Attention):
|
||||
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
|
||||
if not XFORMERS_AVAILABLE:
|
||||
assert attn_bias is None, "xFormers is required for nested tensors usage"
|
||||
if attn_bias is not None:
|
||||
raise AssertionError("xFormers is required for using nested tensors")
|
||||
return super().forward(x)
|
||||
|
||||
B, N, C = x.shape
|
||||
|
|
|
@ -9,7 +9,9 @@
|
|||
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
|
||||
|
||||
import logging
|
||||
import os
|
||||
from typing import Callable, List, Any, Tuple, Dict
|
||||
import warnings
|
||||
|
||||
import torch
|
||||
from torch import nn, Tensor
|
||||
|
@ -23,15 +25,21 @@ from .mlp import Mlp
|
|||
logger = logging.getLogger("dinov2")
|
||||
|
||||
|
||||
XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None
|
||||
try:
|
||||
from xformers.ops import fmha
|
||||
from xformers.ops import scaled_index_add, index_select_cat
|
||||
if XFORMERS_ENABLED:
|
||||
from xformers.ops import fmha, scaled_index_add, index_select_cat
|
||||
|
||||
XFORMERS_AVAILABLE = True
|
||||
XFORMERS_AVAILABLE = True
|
||||
warnings.warn("xFormers is available (Block)")
|
||||
else:
|
||||
warnings.warn("xFormers is disabled (Block)")
|
||||
raise ImportError
|
||||
except ImportError:
|
||||
logger.warning("xFormers not available")
|
||||
XFORMERS_AVAILABLE = False
|
||||
|
||||
warnings.warn("xFormers is not available (Block)")
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
def __init__(
|
||||
|
@ -246,7 +254,8 @@ class NestedTensorBlock(Block):
|
|||
if isinstance(x_or_x_list, Tensor):
|
||||
return super().forward(x_or_x_list)
|
||||
elif isinstance(x_or_x_list, list):
|
||||
assert XFORMERS_AVAILABLE, "Please install xFormers for nested tensors usage"
|
||||
if not XFORMERS_AVAILABLE:
|
||||
raise AssertionError("xFormers is required for using nested tensors")
|
||||
return self.forward_nested(x_or_x_list)
|
||||
else:
|
||||
raise AssertionError
|
||||
|
|
|
@ -4,7 +4,9 @@
|
|||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import os
|
||||
from typing import Callable, Optional
|
||||
import warnings
|
||||
|
||||
from torch import Tensor, nn
|
||||
import torch.nn.functional as F
|
||||
|
@ -33,14 +35,22 @@ class SwiGLUFFN(nn.Module):
|
|||
return self.w3(hidden)
|
||||
|
||||
|
||||
XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None
|
||||
try:
|
||||
from xformers.ops import SwiGLU
|
||||
if XFORMERS_ENABLED:
|
||||
from xformers.ops import SwiGLU
|
||||
|
||||
XFORMERS_AVAILABLE = True
|
||||
XFORMERS_AVAILABLE = True
|
||||
warnings.warn("xFormers is available (SwiGLU)")
|
||||
else:
|
||||
warnings.warn("xFormers is disabled (SwiGLU)")
|
||||
raise ImportError
|
||||
except ImportError:
|
||||
SwiGLU = SwiGLUFFN
|
||||
XFORMERS_AVAILABLE = False
|
||||
|
||||
warnings.warn("xFormers is not available (SwiGLU)")
|
||||
|
||||
|
||||
class SwiGLUFFNFused(SwiGLU):
|
||||
def __init__(
|
||||
|
|
|
@ -19,13 +19,11 @@ from dinov2.fsdp import get_fsdp_wrapper, ShardedGradScaler, get_fsdp_modules, r
|
|||
|
||||
from dinov2.models.vision_transformer import BlockChunk
|
||||
|
||||
|
||||
try:
|
||||
from xformers.ops import fmha
|
||||
|
||||
XFORMERS_AVAILABLE = True
|
||||
except ImportError:
|
||||
XFORMERS_AVAILABLE = False
|
||||
assert XFORMERS_AVAILABLE, "xFormers is required for DINOv2 training"
|
||||
raise AssertionError("xFormers is required for training")
|
||||
|
||||
|
||||
logger = logging.getLogger("dinov2")
|
||||
|
|
Loading…
Reference in New Issue