faiss/benchs/bench_gpu_sift1m.py

93 lines
1.9 KiB
Python
Raw Permalink Normal View History

# Copyright (c) Meta Platforms, Inc. and affiliates.
2017-02-25 00:32:08 +08:00
#
# This source code is licensed under the MIT license found in the
2017-02-25 00:32:08 +08:00
# LICENSE file in the root directory of this source tree.
import os
import time
import numpy as np
import pdb
import faiss
from datasets import load_sift1M, evaluate
2017-02-25 00:32:08 +08:00
print("load data")
2017-02-25 00:32:08 +08:00
xb, xq, xt, gt = load_sift1M()
2017-02-25 00:32:08 +08:00
nq, d = xq.shape
# we need only a StandardGpuResources per GPU
res = faiss.StandardGpuResources()
#################################################################
# Exact search experiment
#################################################################
print("============ Exact search")
2017-02-25 00:32:08 +08:00
flat_config = faiss.GpuIndexFlatConfig()
flat_config.device = 0
index = faiss.GpuIndexFlatL2(res, d, flat_config)
2017-02-25 00:32:08 +08:00
print("add vectors to index")
2017-02-25 00:32:08 +08:00
index.add(xb)
print("warmup")
2017-02-25 00:32:08 +08:00
index.search(xq, 123)
print("benchmark")
2017-02-25 00:32:08 +08:00
for lk in range(11):
k = 1 << lk
t, r = evaluate(index, xq, gt, k)
2017-02-25 00:32:08 +08:00
# the recall should be 1 at all times
print("k=%d %.3f ms, R@1 %.4f" % (k, t, r[1]))
2017-02-25 00:32:08 +08:00
#################################################################
# Approximate search experiment
#################################################################
print("============ Approximate search")
2017-02-25 00:32:08 +08:00
index = faiss.index_factory(d, "IVF4096,PQ64")
# faster, uses more memory
# index = faiss.index_factory(d, "IVF16384,Flat")
co = faiss.GpuClonerOptions()
# here we are using a 64-byte PQ, so we must set the lookup tables to
# 16 bit float (this is due to the limited temporary memory).
co.useFloat16 = True
index = faiss.index_cpu_to_gpu(res, 0, index, co)
print("train")
2017-02-25 00:32:08 +08:00
index.train(xt)
print("add vectors to index")
2017-02-25 00:32:08 +08:00
index.add(xb)
print("warmup")
2017-02-25 00:32:08 +08:00
index.search(xq, 123)
print("benchmark")
2017-02-25 00:32:08 +08:00
for lnprobe in range(10):
nprobe = 1 << lnprobe
index.nprobe
index.nprobe = nprobe
t, r = evaluate(index, xq, gt, 100)
print("nprobe=%4d %.3f ms recalls= %.4f %.4f %.4f" % (nprobe, t, r[1], r[10], r[100]))