mirror of
https://github.com/facebookresearch/faiss.git
synced 2025-06-03 21:54:02 +08:00
76 lines
1.9 KiB
Python
76 lines
1.9 KiB
Python
|
# Copyright (c) 2015-present, Facebook, Inc.
|
||
|
# All rights reserved.
|
||
|
#
|
||
|
# This source code is licensed under the BSD+Patents license found in the
|
||
|
# LICENSE file in the root directory of this source tree.
|
||
|
|
||
|
#! /usr/bin/env python2
|
||
|
|
||
|
import numpy as np
|
||
|
import faiss
|
||
|
import time
|
||
|
|
||
|
xd = 100
|
||
|
yd = 1000000
|
||
|
|
||
|
np.random.seed(1234)
|
||
|
|
||
|
faiss.omp_set_num_threads(1)
|
||
|
|
||
|
print 'xd=%d yd=%d' % (xd, yd)
|
||
|
|
||
|
print 'Running inner products test..'
|
||
|
for d in 3, 4, 12, 36, 64:
|
||
|
|
||
|
x = faiss.rand(xd * d).reshape(xd, d)
|
||
|
y = faiss.rand(yd * d).reshape(yd, d)
|
||
|
|
||
|
distances = np.empty((xd, yd), dtype='float32')
|
||
|
|
||
|
t0 = time.time()
|
||
|
for i in xrange(xd):
|
||
|
faiss.fvec_inner_products_ny(faiss.swig_ptr(distances[i]),
|
||
|
faiss.swig_ptr(x[i]),
|
||
|
faiss.swig_ptr(y),
|
||
|
d, yd)
|
||
|
t1 = time.time()
|
||
|
|
||
|
# sparse verification
|
||
|
ntry = 100
|
||
|
num, denom = 0, 0
|
||
|
for t in range(ntry):
|
||
|
xi = np.random.randint(xd)
|
||
|
yi = np.random.randint(yd)
|
||
|
num += abs(distances[xi, yi] - np.dot(x[xi], y[yi]))
|
||
|
denom += abs(distances[xi, yi])
|
||
|
|
||
|
print 'd=%d t=%.3f s diff=%g' % (d, t1 - t0, num / denom)
|
||
|
|
||
|
|
||
|
print 'Running L2sqr test..'
|
||
|
for d in 3, 4, 12, 36, 64:
|
||
|
|
||
|
x = faiss.rand(xd * d).reshape(xd, d)
|
||
|
y = faiss.rand(yd * d).reshape(yd, d)
|
||
|
|
||
|
distances = np.empty((xd, yd), dtype='float32')
|
||
|
|
||
|
t0 = time.time()
|
||
|
for i in xrange(xd):
|
||
|
faiss.fvec_L2sqr_ny(faiss.swig_ptr(distances[i]),
|
||
|
faiss.swig_ptr(x[i]),
|
||
|
faiss.swig_ptr(y),
|
||
|
d, yd)
|
||
|
t1 = time.time()
|
||
|
|
||
|
# sparse verification
|
||
|
ntry = 100
|
||
|
num, denom = 0, 0
|
||
|
for t in range(ntry):
|
||
|
xi = np.random.randint(xd)
|
||
|
yi = np.random.randint(yd)
|
||
|
num += abs(distances[xi, yi] - np.sum((x[xi] - y[yi]) ** 2))
|
||
|
denom += abs(distances[xi, yi])
|
||
|
|
||
|
print 'd=%d t=%.3f s diff=%g' % (d, t1 - t0, num / denom)
|