faiss/tests/test_build_blocks.py

490 lines
15 KiB
Python
Raw Normal View History

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
#! /usr/bin/env python2
import numpy as np
import faiss
import unittest
class TestClustering(unittest.TestCase):
def test_clustering(self):
d = 64
n = 1000
rs = np.random.RandomState(123)
x = rs.uniform(size=(n, d)).astype('float32')
x *= 10
km = faiss.Kmeans(d, 32, niter=10)
err32 = km.train(x)
# check that objective is decreasing
prev = 1e50
for o in km.obj:
self.assertGreater(prev, o)
prev = o
km = faiss.Kmeans(d, 64, niter=10)
err64 = km.train(x)
# check that 64 centroids give a lower quantization error than 32
self.assertGreater(err32, err64)
km = faiss.Kmeans(d, 32, niter=10, int_centroids=True)
err_int = km.train(x)
# check that integer centoids are not as good as float ones
self.assertGreater(err_int, err32)
self.assertTrue(np.all(km.centroids == np.floor(km.centroids)))
def test_nasty_clustering(self):
d = 2
rs = np.random.RandomState(123)
x = np.zeros((100, d), dtype='float32')
for i in range(5):
x[i * 20:i * 20 + 20] = rs.uniform(size=d)
# we have 5 distinct points but ask for 10 centroids...
km = faiss.Kmeans(d, 10, niter=10, verbose=True)
km.train(x)
def test_redo(self):
d = 64
n = 1000
rs = np.random.RandomState(123)
x = rs.uniform(size=(n, d)).astype('float32')
clus = faiss.Clustering(d, 20)
clus.nredo = 1
clus.train(x, faiss.IndexFlatL2(d))
obj1 = faiss.vector_to_array(clus.obj)
clus = faiss.Clustering(d, 20)
clus.nredo = 10
clus.train(x, faiss.IndexFlatL2(d))
obj10 = faiss.vector_to_array(clus.obj)
self.assertGreater(obj1[-1], obj10[-1])
def test_1ptpercluster(self):
# https://github.com/facebookresearch/faiss/issues/842
X = np.random.randint(0, 1, (5, 10)).astype('float32')
k = 5
niter = 10
verbose = True
kmeans = faiss.Kmeans(X.shape[1], k, niter=niter, verbose=verbose)
kmeans.train(X)
l2_distances, I = kmeans.index.search(X, 1)
class TestPCA(unittest.TestCase):
def test_pca(self):
d = 64
n = 1000
np.random.seed(123)
x = np.random.random(size=(n, d)).astype('float32')
pca = faiss.PCAMatrix(d, 10)
pca.train(x)
y = pca.apply_py(x)
# check that energy per component is decreasing
column_norm2 = (y**2).sum(0)
prev = 1e50
for o in column_norm2:
self.assertGreater(prev, o)
prev = o
class TestProductQuantizer(unittest.TestCase):
def test_pq(self):
d = 64
n = 2000
cs = 4
np.random.seed(123)
x = np.random.random(size=(n, d)).astype('float32')
pq = faiss.ProductQuantizer(d, cs, 8)
pq.train(x)
codes = pq.compute_codes(x)
x2 = pq.decode(codes)
diff = ((x - x2)**2).sum()
# print "diff=", diff
# diff= 4418.0562
self.assertGreater(5000, diff)
pq10 = faiss.ProductQuantizer(d, cs, 10)
assert pq10.code_size == 5
pq10.verbose = True
pq10.cp.verbose = True
pq10.train(x)
codes = pq10.compute_codes(x)
x10 = pq10.decode(codes)
diff10 = ((x - x10)**2).sum()
self.assertGreater(diff, diff10)
def do_test_codec(self, nbit):
pq = faiss.ProductQuantizer(16, 2, nbit)
# simulate training
rs = np.random.RandomState(123)
centroids = rs.rand(2, 1 << nbit, 8).astype('float32')
faiss.copy_array_to_vector(centroids.ravel(), pq.centroids)
idx = rs.randint(1 << nbit, size=(100, 2))
# can be encoded exactly
x = np.hstack((
centroids[0, idx[:, 0]],
centroids[1, idx[:, 1]]
))
# encode / decode
codes = pq.compute_codes(x)
xr = pq.decode(codes)
assert np.all(xr == x)
# encode w/ external index
assign_index = faiss.IndexFlatL2(8)
pq.assign_index = assign_index
codes2 = np.empty((100, pq.code_size), dtype='uint8')
pq.compute_codes_with_assign_index(
faiss.swig_ptr(x), faiss.swig_ptr(codes2), 100)
assert np.all(codes == codes2)
def test_codec(self):
for i in range(16):
print("Testing nbits=%d" % (i + 1))
self.do_test_codec(i + 1)
class TestRevSwigPtr(unittest.TestCase):
def test_rev_swig_ptr(self):
index = faiss.IndexFlatL2(4)
xb0 = np.vstack([
i * 10 + np.array([1, 2, 3, 4], dtype='float32')
for i in range(5)])
index.add(xb0)
xb = faiss.rev_swig_ptr(index.xb.data(), 4 * 5).reshape(5, 4)
self.assertEqual(np.abs(xb0 - xb).sum(), 0)
class TestException(unittest.TestCase):
def test_exception(self):
index = faiss.IndexFlatL2(10)
a = np.zeros((5, 10), dtype='float32')
b = np.zeros(5, dtype='int64')
try:
# an unsupported operation for IndexFlat
index.add_with_ids(a, b)
2018-02-24 07:38:45 +08:00
except RuntimeError as e:
assert 'add_with_ids not implemented' in str(e)
else:
assert False, 'exception did not fire???'
def test_exception_2(self):
try:
faiss.index_factory(12, 'IVF256,Flat,PQ8')
2018-02-24 07:38:45 +08:00
except RuntimeError as e:
assert 'could not parse' in str(e)
else:
assert False, 'exception did not fire???'
class TestMapLong2Long(unittest.TestCase):
def test_maplong2long(self):
keys = np.array([13, 45, 67])
vals = np.array([3, 8, 2])
m = faiss.MapLong2Long()
m.add(keys, vals)
assert np.all(m.search_multiple(keys) == vals)
assert m.search(12343) == -1
class TestOrthognalReconstruct(unittest.TestCase):
def test_recons_orthonormal(self):
lt = faiss.LinearTransform(20, 10, True)
rs = np.random.RandomState(10)
A, _ = np.linalg.qr(rs.randn(20, 20))
A = A[:10].astype('float32')
faiss.copy_array_to_vector(A.ravel(), lt.A)
faiss.copy_array_to_vector(rs.randn(10).astype('float32'), lt.b)
lt.set_is_orthonormal()
lt.is_trained = True
assert lt.is_orthonormal
x = rs.rand(30, 20).astype('float32')
xt = lt.apply_py(x)
xtt = lt.reverse_transform(xt)
xttt = lt.apply_py(xtt)
err = ((xt - xttt)**2).sum()
self.assertGreater(1e-5, err)
def test_recons_orthogona_impossible(self):
lt = faiss.LinearTransform(20, 10, True)
rs = np.random.RandomState(10)
A = rs.randn(10 * 20).astype('float32')
faiss.copy_array_to_vector(A.ravel(), lt.A)
faiss.copy_array_to_vector(rs.randn(10).astype('float32'), lt.b)
lt.is_trained = True
lt.set_is_orthonormal()
assert not lt.is_orthonormal
x = rs.rand(30, 20).astype('float32')
xt = lt.apply_py(x)
try:
lt.reverse_transform(xt)
except Exception:
pass
else:
self.assertFalse('should do an exception')
class TestMAdd(unittest.TestCase):
def test_1(self):
# try with dimensions that are multiples of 16 or not
rs = np.random.RandomState(123)
swig_ptr = faiss.swig_ptr
for dim in 16, 32, 20, 25:
for repeat in 1, 2, 3, 4, 5:
a = rs.rand(dim).astype('float32')
b = rs.rand(dim).astype('float32')
c = np.zeros(dim, dtype='float32')
bf = rs.uniform(5.0) - 2.5
idx = faiss.fvec_madd_and_argmin(
dim, swig_ptr(a), bf, swig_ptr(b),
swig_ptr(c))
ref_c = a + b * bf
assert np.abs(c - ref_c).max() < 1e-5
assert idx == ref_c.argmin()
class TestNyFuncs(unittest.TestCase):
def test_l2(self):
rs = np.random.RandomState(123)
swig_ptr = faiss.swig_ptr
for d in 1, 2, 4, 8, 12, 16:
x = rs.rand(d).astype('float32')
for ny in 128, 129, 130:
print("d=%d ny=%d" % (d, ny))
y = rs.rand(ny, d).astype('float32')
ref = ((x - y) ** 2).sum(1)
new = np.zeros(ny, dtype='float32')
faiss.fvec_L2sqr_ny(swig_ptr(new), swig_ptr(x),
swig_ptr(y), d, ny)
assert np.abs(ref - new).max() < 1e-4
def test_IP(self):
# this one is not optimized with SIMD but just in case
rs = np.random.RandomState(123)
swig_ptr = faiss.swig_ptr
for d in 1, 2, 4, 8, 12, 16:
x = rs.rand(d).astype('float32')
for ny in 128, 129, 130:
print("d=%d ny=%d" % (d, ny))
y = rs.rand(ny, d).astype('float32')
ref = (x * y).sum(1)
new = np.zeros(ny, dtype='float32')
faiss.fvec_inner_products_ny(
swig_ptr(new), swig_ptr(x), swig_ptr(y), d, ny)
assert np.abs(ref - new).max() < 1e-4
class TestMatrixStats(unittest.TestCase):
def test_0s(self):
rs = np.random.RandomState(123)
m = rs.rand(40, 20).astype('float32')
m[5:10] = 0
comments = faiss.MatrixStats(m).comments
print comments
assert 'has 5 copies' in comments
assert '5 null vectors' in comments
def test_copies(self):
rs = np.random.RandomState(123)
m = rs.rand(40, 20).astype('float32')
m[::2] = m[1::2]
comments = faiss.MatrixStats(m).comments
print comments
assert '20 vectors are distinct' in comments
def test_dead_dims(self):
rs = np.random.RandomState(123)
m = rs.rand(40, 20).astype('float32')
m[:, 5:10] = 0
comments = faiss.MatrixStats(m).comments
print comments
assert '5 dimensions are constant' in comments
def test_rogue_means(self):
rs = np.random.RandomState(123)
m = rs.rand(40, 20).astype('float32')
m[:, 5:10] += 12345
comments = faiss.MatrixStats(m).comments
print comments
assert '5 dimensions are too large wrt. their variance' in comments
def test_normalized(self):
rs = np.random.RandomState(123)
m = rs.rand(40, 20).astype('float32')
faiss.normalize_L2(m)
comments = faiss.MatrixStats(m).comments
print comments
assert 'vectors are normalized' in comments
class TestScalarQuantizer(unittest.TestCase):
def test_8bit_equiv(self):
rs = np.random.RandomState(123)
for it in range(20):
for d in 13, 16, 24:
x = np.floor(rs.rand(5, d) * 256).astype('float32')
x[0] = 0
x[1] = 255
# make sure to test extreme cases
x[2, 0] = 0
x[3, 0] = 255
x[2, 1] = 255
x[3, 1] = 0
ref_index = faiss.IndexScalarQuantizer(
d, faiss.ScalarQuantizer.QT_8bit)
ref_index.train(x[:2])
ref_index.add(x[2:3])
index = faiss.IndexScalarQuantizer(
d, faiss.ScalarQuantizer.QT_8bit_direct)
assert index.is_trained
index.add(x[2:3])
assert np.all(
faiss.vector_to_array(ref_index.codes) ==
faiss.vector_to_array(index.codes))
# Note that distances are not the same because ref_index
# reconstructs x as x + 0.5
D, I = index.search(x[3:], 1)
# assert D[0, 0] == Dref[0, 0]
print(D[0, 0], ((x[3] - x[2]) ** 2).sum())
assert D[0, 0] == ((x[3] - x[2]) ** 2).sum()
def test_6bit_equiv(self):
rs = np.random.RandomState(123)
for d in 3, 6, 8, 16, 36:
trainset = np.zeros((2, d), dtype='float32')
trainset[0, :] = 0
trainset[0, :] = 63
index = faiss.IndexScalarQuantizer(
d, faiss.ScalarQuantizer.QT_6bit)
index.train(trainset)
print('cs=', index.code_size)
x = rs.randint(64, size=(100, d)).astype('float32')
# verify encoder / decoder
index.add(x)
x2 = index.reconstruct_n(0, x.shape[0])
assert np.all(x == x2 - 0.5)
# verify AVX decoder (used only for search)
y = 63 * rs.rand(20, d).astype('float32')
D, I = index.search(y, 10)
for i in range(20):
for j in range(10):
dis = ((y[i] - x2[I[i, j]]) ** 2).sum()
print(dis, D[i, j])
assert abs(D[i, j] - dis) / dis < 1e-5
class TestRandom(unittest.TestCase):
def test_rand(self):
x = faiss.rand(2000)
assert np.all(x >= 0) and np.all(x < 1)
h, _ = np.histogram(x, np.arange(0, 1, 0.1))
assert h.min() > 160 and h.max() < 240
def test_randint(self):
x = faiss.randint(20000, vmax=100)
assert np.all(x >= 0) and np.all(x < 100)
c = np.bincount(x, minlength=100)
print(c)
assert c.max() - c.min() < 50 * 2
class TestPairwiseDis(unittest.TestCase):
def test_L2(self):
swig_ptr = faiss.swig_ptr
x = faiss.rand((100, 10), seed=1)
y = faiss.rand((200, 10), seed=2)
ix = faiss.randint(50, vmax=100)
iy = faiss.randint(50, vmax=200)
dis = np.empty(50, dtype='float32')
faiss.pairwise_indexed_L2sqr(
10, 50,
swig_ptr(x), swig_ptr(ix),
swig_ptr(y), swig_ptr(iy),
swig_ptr(dis))
for i in range(50):
assert np.allclose(
dis[i], ((x[ix[i]] - y[iy[i]]) ** 2).sum())
def test_IP(self):
swig_ptr = faiss.swig_ptr
x = faiss.rand((100, 10), seed=1)
y = faiss.rand((200, 10), seed=2)
ix = faiss.randint(50, vmax=100)
iy = faiss.randint(50, vmax=200)
dis = np.empty(50, dtype='float32')
faiss.pairwise_indexed_inner_product(
10, 50,
swig_ptr(x), swig_ptr(ix),
swig_ptr(y), swig_ptr(iy),
swig_ptr(dis))
for i in range(50):
assert np.allclose(
dis[i], np.dot(x[ix[i]], y[iy[i]]))
if __name__ == '__main__':
unittest.main()