faiss/VectorTransform.cpp

842 lines
22 KiB
C++
Raw Normal View History

2017-02-23 06:26:44 +08:00
/**
* Copyright (c) 2015-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the CC-by-NC license found in the
* LICENSE file in the root directory of this source tree.
*/
// Copyright 2004-present Facebook. All Rights Reserved
// -*- c++ -*-
#include "VectorTransform.h"
#include <cstdio>
#include <cmath>
#include <cstring>
#include "utils.h"
#include "FaissAssert.h"
#include "IndexPQ.h"
using namespace faiss;
extern "C" {
// this is to keep the clang syntax checker happy
#ifndef FINTEGER
#define FINTEGER int
#endif
/* declare BLAS functions, see http://www.netlib.org/clapack/cblas/ */
int sgemm_ (
const char *transa, const char *transb, FINTEGER *m, FINTEGER *
n, FINTEGER *k, const float *alpha, const float *a,
FINTEGER *lda, const float *b,
FINTEGER *ldb, float *beta,
float *c, FINTEGER *ldc);
int ssyrk_ (
const char *uplo, const char *trans, FINTEGER *n, FINTEGER *k,
float *alpha, float *a, FINTEGER *lda,
float *beta, float *c, FINTEGER *ldc);
/* Lapack functions from http://www.netlib.org/clapack/old/single/ */
int ssyev_ (
const char *jobz, const char *uplo, FINTEGER *n, float *a,
FINTEGER *lda, float *w, float *work, FINTEGER *lwork,
FINTEGER *info);
int sgesvd_(
const char *jobu, const char *jobvt, FINTEGER *m, FINTEGER *n,
float *a, FINTEGER *lda, float *s, float *u, FINTEGER *ldu, float *vt,
FINTEGER *ldvt, float *work, FINTEGER *lwork, FINTEGER *info);
}
/*********************************************
* VectorTransform
*********************************************/
float * VectorTransform::apply (Index::idx_t n, const float * x) const
{
float * xt = new float[n * d_out];
apply_noalloc (n, x, xt);
return xt;
}
void VectorTransform::train (idx_t, const float *) {
// does nothing by default
}
void VectorTransform::reverse_transform (
idx_t , const float *,
float *) const
{
FAISS_ASSERT (!"reverse transform not implemented");
}
/*********************************************
* LinearTransform
*********************************************/
/// both d_in > d_out and d_out < d_in are supported
LinearTransform::LinearTransform (int d_in, int d_out,
bool have_bias):
VectorTransform (d_in, d_out), have_bias (have_bias),
verbose (false)
2017-02-23 06:26:44 +08:00
{}
void LinearTransform::apply_noalloc (Index::idx_t n, const float * x,
float * xt) const
{
FAISS_ASSERT(is_trained || !"Transformation not trained yet");
float c_factor;
if (have_bias) {
FAISS_ASSERT (b.size() == d_out || !"Bias not initialized");
float * xi = xt;
for (int i = 0; i < n; i++)
for(int j = 0; j < d_out; j++)
*xi++ = b[j];
c_factor = 1.0;
} else {
c_factor = 0.0;
}
FAISS_ASSERT (A.size() == d_out * d_in ||
!"Transformation matrix not initialized");
float one = 1;
FINTEGER nbiti = d_out, ni = n, di = d_in;
sgemm_ ("Transposed", "Not transposed",
&nbiti, &ni, &di,
&one, A.data(), &di, x, &di, &c_factor, xt, &nbiti);
}
void LinearTransform::transform_transpose (idx_t n, const float * y,
float *x) const
{
if (have_bias) { // allocate buffer to store bias-corrected data
float *y_new = new float [n * d_out];
const float *yr = y;
float *yw = y_new;
for (idx_t i = 0; i < n; i++) {
for (int j = 0; j < d_out; j++) {
*yw++ = *yr++ - b [j];
}
}
y = y_new;
}
{
FINTEGER dii = d_in, doi = d_out, ni = n;
float one = 1.0, zero = 0.0;
sgemm_ ("Not", "Not", &dii, &ni, &doi,
&one, A.data (), &dii, y, &doi, &zero, x, &dii);
}
if (have_bias) delete [] y;
}
/*********************************************
* RandomRotationMatrix
*********************************************/
void RandomRotationMatrix::init (int seed)
{
if(d_out <= d_in) {
A.resize (d_out * d_in);
float *q = A.data();
float_randn(q, d_out * d_in, seed);
matrix_qr(d_in, d_out, q);
} else {
A.resize (d_out * d_out);
float *q = A.data();
float_randn(q, d_out * d_out, seed);
matrix_qr(d_out, d_out, q);
// remove columns
int i, j;
for (i = 0; i < d_out; i++) {
for(j = 0; j < d_in; j++) {
q[i * d_in + j] = q[i * d_out + j];
}
}
A.resize(d_in * d_out);
}
}
void RandomRotationMatrix::reverse_transform (idx_t n, const float * xt,
float *x) const
{
transform_transpose (n, xt, x);
}
/*********************************************
* PCAMatrix
*********************************************/
PCAMatrix::PCAMatrix (int d_in, int d_out,
float eigen_power, bool random_rotation):
LinearTransform(d_in, d_out, true),
eigen_power(eigen_power), random_rotation(random_rotation)
{
is_trained = false;
max_points_per_d = 1000;
balanced_bins = 0;
}
void PCAMatrix::train (Index::idx_t n, const float *x)
{
const float * x_in = x;
x = fvecs_maybe_subsample (d_in, (size_t*)&n,
max_points_per_d * d_in, x, verbose);
2017-02-23 06:26:44 +08:00
// compute mean
mean.clear(); mean.resize(d_in, 0.0);
if (have_bias) { // we may want to skip the bias
const float *xi = x;
for (int i = 0; i < n; i++) {
for(int j = 0; j < d_in; j++)
mean[j] += *xi++;
}
for(int j = 0; j < d_in; j++)
mean[j] /= n;
}
if(verbose) {
printf("mean=[");
for(int j = 0; j < d_in; j++) printf("%g ", mean[j]);
printf("]\n");
}
if(n >= d_in) {
// compute covariance matrix, store it in PCA matrix
PCAMat.resize(d_in * d_in);
float * cov = PCAMat.data();
{ // initialize with mean * mean^T term
float *ci = cov;
for(int i = 0; i < d_in; i++) {
for(int j = 0; j < d_in; j++)
*ci++ = - n * mean[i] * mean[j];
}
}
{
FINTEGER di = d_in, ni = n;
float one = 1.0;
ssyrk_ ("Up", "Non transposed",
&di, &ni, &one, (float*)x, &di, &one, cov, &di);
}
if(verbose && d_in <= 10) {
float *ci = cov;
printf("cov=\n");
for(int i = 0; i < d_in; i++) {
for(int j = 0; j < d_in; j++)
printf("%10g ", *ci++);
printf("\n");
}
}
{ // compute eigenvalues and vectors
eigenvalues.resize(d_in);
FINTEGER info = 0, lwork = -1, di = d_in;
float workq;
ssyev_ ("Vectors as well", "Upper",
&di, cov, &di, eigenvalues.data(), &workq, &lwork, &info);
lwork = FINTEGER(workq);
float *work = new float[lwork];
ssyev_ ("Vectors as well", "Upper",
&di, cov, &di, eigenvalues.data(), work, &lwork, &info);
if (info != 0) {
fprintf (stderr, "WARN ssyev info returns %d, "
"a very bad PCA matrix is learnt\n",
int(info));
}
delete [] work;
if(verbose && d_in <= 10) {
printf("info=%ld new eigvals=[", long(info));
for(int j = 0; j < d_in; j++) printf("%g ", eigenvalues[j]);
printf("]\n");
float *ci = cov;
printf("eigenvecs=\n");
for(int i = 0; i < d_in; i++) {
for(int j = 0; j < d_in; j++)
printf("%10.4g ", *ci++);
printf("\n");
}
}
}
// revert order of eigenvectors & values
for(int i = 0; i < d_in / 2; i++) {
std::swap(eigenvalues[i], eigenvalues[d_in - 1 - i]);
float *v1 = cov + i * d_in;
float *v2 = cov + (d_in - 1 - i) * d_in;
for(int j = 0; j < d_in; j++)
std::swap(v1[j], v2[j]);
}
} else {
FAISS_ASSERT(!"Gramm matrix version not implemented "
"-- provide more training examples than dimensions");
}
if (x != x_in) delete [] x;
prepare_Ab();
is_trained = true;
}
void PCAMatrix::copy_from (const PCAMatrix & other)
{
FAISS_ASSERT (other.is_trained);
mean = other.mean;
eigenvalues = other.eigenvalues;
PCAMat = other.PCAMat;
prepare_Ab ();
is_trained = true;
}
void PCAMatrix::prepare_Ab ()
{
if (!random_rotation) {
A = PCAMat;
A.resize(d_out * d_in); // strip off useless dimensions
// first scale the components
if (eigen_power != 0) {
float *ai = A.data();
for (int i = 0; i < d_out; i++) {
float factor = pow(eigenvalues[i], eigen_power);
for(int j = 0; j < d_in; j++)
*ai++ *= factor;
}
}
if (balanced_bins != 0) {
FAISS_ASSERT (d_out % balanced_bins == 0);
int dsub = d_out / balanced_bins;
std::vector <float> Ain;
std::swap(A, Ain);
A.resize(d_out * d_in);
std::vector <float> accu(balanced_bins);
std::vector <int> counter(balanced_bins);
// greedy assignment
for (int i = 0; i < d_out; i++) {
// find best bin
int best_j = -1;
float min_w = 1e30;
for (int j = 0; j < balanced_bins; j++) {
if (counter[j] < dsub && accu[j] < min_w) {
min_w = accu[j];
best_j = j;
}
}
int row_dst = best_j * dsub + counter[best_j];
accu[best_j] += eigenvalues[i];
counter[best_j] ++;
memcpy (&A[row_dst * d_in], &Ain[i * d_in],
d_in * sizeof (A[0]));
}
if (verbose) {
printf(" bin accu=[");
for (int i = 0; i < balanced_bins; i++)
printf("%g ", accu[i]);
printf("]\n");
}
}
} else {
FAISS_ASSERT (balanced_bins == 0 ||
!"both balancing bins and applying a random rotation "
"does not make sense");
RandomRotationMatrix rr(d_out, d_out);
rr.init(5);
// apply scaling on the rotation matrix (right multiplication)
if (eigen_power != 0) {
for (int i = 0; i < d_out; i++) {
float factor = pow(eigenvalues[i], eigen_power);
for(int j = 0; j < d_out; j++)
rr.A[j * d_out + i] *= factor;
}
}
A.resize(d_in * d_out);
{
FINTEGER dii = d_in, doo = d_out;
float one = 1.0, zero = 0.0;
sgemm_ ("Not", "Not", &dii, &doo, &doo,
&one, PCAMat.data(), &dii, rr.A.data(), &doo, &zero,
A.data(), &dii);
}
}
b.clear(); b.resize(d_out);
for (int i = 0; i < d_out; i++) {
float accu = 0;
for (int j = 0; j < d_in; j++)
accu -= mean[j] * A[j + i * d_in];
b[i] = accu;
}
}
void PCAMatrix::reverse_transform (idx_t n, const float * xt,
float *x) const
{
FAISS_ASSERT (eigen_power == 0 ||
!"reverse only implemented for orthogonal transforms");
transform_transpose (n, xt, x);
}
/*********************************************
* OPQMatrix
*********************************************/
OPQMatrix::OPQMatrix (int d, int M, int d2):
LinearTransform (d, d2 == -1 ? d : d2, false), M(M),
niter (50),
niter_pq (4), niter_pq_0 (40),
verbose(false)
{
is_trained = false;
// OPQ is quite expensive to train, so set this right.
max_train_points = 256 * 256;
2017-02-23 06:26:44 +08:00
}
void OPQMatrix::train (Index::idx_t n, const float *x)
{
const float * x_in = x;
x = fvecs_maybe_subsample (d_in, (size_t*)&n,
max_train_points, x, verbose);
2017-02-23 06:26:44 +08:00
// To support d_out > d_in, we pad input vectors with 0s to d_out
size_t d = d_out <= d_in ? d_in : d_out;
size_t d2 = d_out;
#if 0
// what this test shows: the only way of getting bit-exact
// reproducible results with sgeqrf and sgesvd seems to be forcing
// single-threading.
{ // test repro
std::vector<float> r (d * d);
float * rotation = r.data();
float_randn (rotation, d * d, 1234);
printf("CS0: %016lx\n",
ivec_checksum (128*128, (int*)rotation));
matrix_qr (d, d, rotation);
printf("CS1: %016lx\n",
ivec_checksum (128*128, (int*)rotation));
return;
}
#endif
if (verbose) {
printf ("OPQMatrix::train: training an OPQ rotation matrix "
"for M=%d from %ld vectors in %dD -> %dD\n",
M, n, d_in, d_out);
}
std::vector<float> xtrain (n * d);
// center x
{
std::vector<float> sum (d);
const float *xi = x;
for (size_t i = 0; i < n; i++) {
for (int j = 0; j < d_in; j++)
sum [j] += *xi++;
}
for (int i = 0; i < d; i++) sum[i] /= n;
float *yi = xtrain.data();
xi = x;
for (size_t i = 0; i < n; i++) {
for (int j = 0; j < d_in; j++)
*yi++ = *xi++ - sum[j];
yi += d - d_in;
}
}
float *rotation;
if (A.size () == 0) {
A.resize (d * d);
rotation = A.data();
if (verbose)
printf(" OPQMatrix::train: making random %ld*%ld rotation\n",
d, d);
float_randn (rotation, d * d, 1234);
matrix_qr (d, d, rotation);
// we use only the d * d2 upper part of the matrix
A.resize (d * d2);
} else {
FAISS_ASSERT (A.size() == d * d2);
rotation = A.data();
}
std::vector<float>
xproj (d2 * n), pq_recons (d2 * n), xxr (d * n),
tmp(d * d * 4);
std::vector<uint8_t> codes (M * n);
ProductQuantizer pq_regular (d2, M, 8);
double t0 = getmillisecs();
for (int iter = 0; iter < niter; iter++) {
{ // torch.mm(xtrain, rotation:t())
FINTEGER di = d, d2i = d2, ni = n;
float zero = 0, one = 1;
sgemm_ ("Transposed", "Not transposed",
&d2i, &ni, &di,
&one, rotation, &di,
xtrain.data(), &di,
&zero, xproj.data(), &d2i);
}
pq_regular.cp.max_points_per_centroid = 1000;
pq_regular.cp.niter = iter == 0 ? niter_pq_0 : niter_pq;
pq_regular.cp.verbose = verbose;
pq_regular.train (n, xproj.data());
pq_regular.compute_codes (xproj.data(), codes.data(), n);
pq_regular.decode (codes.data(), pq_recons.data(), n);
float pq_err = fvec_L2sqr (pq_recons.data(), xproj.data(), n * d2) / n;
if (verbose)
printf (" Iteration %d (%d PQ iterations):"
"%.3f s, obj=%g\n", iter, pq_regular.cp.niter,
(getmillisecs () - t0) / 1000.0, pq_err);
{
float *u = tmp.data(), *vt = &tmp [d * d];
float *sing_val = &tmp [2 * d * d];
FINTEGER di = d, d2i = d2, ni = n;
float one = 1, zero = 0;
// torch.mm(xtrain:t(), pq_recons)
sgemm_ ("Not", "Transposed",
&d2i, &di, &ni,
&one, pq_recons.data(), &d2i,
xtrain.data(), &di,
&zero, xxr.data(), &d2i);
FINTEGER lwork = -1, info = -1;
float worksz;
// workspace query
sgesvd_ ("All", "All",
&d2i, &di, xxr.data(), &d2i,
sing_val,
vt, &d2i, u, &di,
&worksz, &lwork, &info);
lwork = int(worksz);
std::vector<float> work (lwork);
// u and vt swapped
sgesvd_ ("All", "All",
&d2i, &di, xxr.data(), &d2i,
sing_val,
vt, &d2i, u, &di,
work.data(), &lwork, &info);
sgemm_ ("Transposed", "Transposed",
&di, &d2i, &d2i,
&one, u, &di, vt, &d2i,
&zero, rotation, &di);
}
pq_regular.train_type = ProductQuantizer::Train_hot_start;
}
// revert A matrix
if (d > d_in) {
for (long i = 0; i < d_out; i++)
memmove (&A[i * d_in], &A[i * d], sizeof(A[0]) * d_in);
A.resize (d_in * d_out);
}
if (x != x_in)
delete [] x;
is_trained = true;
}
void OPQMatrix::reverse_transform (idx_t n, const float * xt,
float *x) const
{
transform_transpose (n, xt, x);
}
/*********************************************
* IndexPreTransform
*********************************************/
IndexPreTransform::IndexPreTransform ():
index(nullptr), own_fields (false)
{
}
IndexPreTransform::IndexPreTransform (
Index * index):
Index (index->d, index->metric_type),
index (index), own_fields (false)
{
is_trained = index->is_trained;
set_typename();
}
IndexPreTransform::IndexPreTransform (
VectorTransform * ltrans,
Index * index):
Index (index->d, index->metric_type),
index (index), own_fields (false)
{
is_trained = index->is_trained;
prepend_transform (ltrans);
set_typename();
}
void IndexPreTransform::prepend_transform (VectorTransform *ltrans)
{
FAISS_ASSERT (ltrans->d_out == d);
is_trained = is_trained && ltrans->is_trained;
chain.insert (chain.begin(), ltrans);
d = ltrans->d_in;
set_typename ();
}
void IndexPreTransform::set_typename ()
{
// TODO correct this according to actual type
index_typename = "PreLT[" + index->index_typename + "]";
}
IndexPreTransform::~IndexPreTransform ()
{
if (own_fields) {
for (int i = 0; i < chain.size(); i++)
delete chain[i];
delete index;
}
}
void IndexPreTransform::train (idx_t n, const float *x)
{
int last_untrained = 0;
for (int i = 0; i < chain.size(); i++)
if (!chain[i]->is_trained) last_untrained = i;
if (!index->is_trained) last_untrained = chain.size();
const float *prev_x = x;
for (int i = 0; i <= last_untrained; i++) {
if (i < chain.size()) {
VectorTransform *ltrans = chain [i];
if (!ltrans->is_trained)
ltrans->train(n, prev_x);
} else {
index->train (n, prev_x);
}
if (i == last_untrained) break;
float * xt = chain[i]->apply (n, prev_x);
if (prev_x != x) delete [] prev_x;
prev_x = xt;
}
if (prev_x != x) delete [] prev_x;
is_trained = true;
}
const float *IndexPreTransform::apply_chain (idx_t n, const float *x) const
{
const float *prev_x = x;
for (int i = 0; i < chain.size(); i++) {
float * xt = chain[i]->apply (n, prev_x);
if (prev_x != x) delete [] prev_x;
prev_x = xt;
}
return prev_x;
}
void IndexPreTransform::add (idx_t n, const float *x)
{
FAISS_ASSERT (is_trained);
const float *xt = apply_chain (n, x);
index->add (n, xt);
if (xt != x) delete [] xt;
ntotal = index->ntotal;
}
void IndexPreTransform::add_with_ids (idx_t n, const float * x,
const long *xids)
{
FAISS_ASSERT (is_trained);
const float *xt = apply_chain (n, x);
index->add_with_ids (n, xt, xids);
if (xt != x) delete [] xt;
ntotal = index->ntotal;
}
void IndexPreTransform::search (idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels) const
{
FAISS_ASSERT (is_trained);
const float *xt = apply_chain (n, x);
index->search (n, xt, k, distances, labels);
if (xt != x) delete [] xt;
}
void IndexPreTransform::reset () {
index->reset();
ntotal = 0;
}
long IndexPreTransform::remove_ids (const IDSelector & sel) {
long nremove = index->remove_ids (sel);
ntotal = index->ntotal;
return nremove;
}
void IndexPreTransform::reconstruct_n (idx_t i0, idx_t ni, float *recons) const
{
float *x = chain.empty() ? recons : new float [ni * index->d];
// initial reconstruction
index->reconstruct_n (i0, ni, x);
// revert transformations from last to first
for (int i = chain.size() - 1; i >= 0; i--) {
float *x_pre = i == 0 ? recons : new float [chain[i]->d_in * ni];
chain [i]->reverse_transform (ni, x, x_pre);
delete [] x;
x = x_pre;
}
}
/*********************************************
* RemapDimensionsTransform
*********************************************/
RemapDimensionsTransform::RemapDimensionsTransform (
int d_in, int d_out, const int *map_in):
VectorTransform (d_in, d_out)
{
map.resize (d_out);
for (int i = 0; i < d_out; i++) {
map[i] = map_in[i];
FAISS_ASSERT (map[i] == -1 || (map[i] >= 0 && map[i] < d_in));
}
}
RemapDimensionsTransform::RemapDimensionsTransform (
int d_in, int d_out, bool uniform): VectorTransform (d_in, d_out)
{
map.resize (d_out, -1);
if (uniform) {
if (d_in < d_out) {
for (int i = 0; i < d_in; i++) {
map [i * d_out / d_in] = i;
}
} else {
for (int i = 0; i < d_out; i++) {
map [i] = i * d_in / d_out;
}
}
} else {
for (int i = 0; i < d_in && i < d_out; i++)
map [i] = i;
}
}
void RemapDimensionsTransform::apply_noalloc (idx_t n, const float * x,
float *xt) const
{
for (idx_t i = 0; i < n; i++) {
for (int j = 0; j < d_out; j++) {
xt[j] = map[j] < 0 ? 0 : x[map[j]];
}
x += d_in;
xt += d_out;
}
}
void RemapDimensionsTransform::reverse_transform (idx_t n, const float * xt,
float *x) const
{
memset (x, 0, sizeof (*x) * n * d_in);
for (idx_t i = 0; i < n; i++) {
for (int j = 0; j < d_out; j++) {
if (map[j] >= 0) x[map[j]] = xt[j];
}
x += d_in;
xt += d_out;
}
}