faiss/tests/test_contrib.py

776 lines
25 KiB
Python
Raw Normal View History

# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import platform
import shutil
import tempfile
import unittest
from contextlib import contextmanager
2020-08-03 22:15:02 +02:00
import faiss
import numpy as np
Migration off defaults to conda-forge channel (#4126) Summary: Pull Request resolved: https://github.com/facebookresearch/faiss/pull/4126 Good resource on overriding channels to make sure we aren't using `defaults`:https://stackoverflow.com/questions/67695893/how-do-i-completely-purge-and-disable-the-default-channel-in-anaconda-and-switch Explanation of changes: - - changed to miniforge from miniconda: this ensures we only pull in from conda-defaults when creating the environment - architecture: ARM64 and aarch64 are the same thing. But there is no miniforge package for ARM64, so we need to make it check for aarch64 instead. However, mac breaks this rule, and does have macOS-arm64! So there is a conditional for mac to use arm64. https://github.com/conda-forge/miniforge/releases/ - action.yml mkl 2022.2.1 change: conda-forge and defaults have completely different dependencies. Defaults required intel-openmp, but now on conda-forge, mkl 2023.1 or higher requires llvm-openmp >=14.0.6, but this is incompatible with the pytorch build <2.5 which requires llvm-openmp<14.0. We would need to upgrade Python to 3.12 first, upgrade Pytorch build, then upgrade this mkl. (The meta.yaml changes are the ones that narrow it to 2022.2.1 during `conda build faiss`.) So, this has just been changed to 2022.2.1. - mkl now requires _openmp_mutex of type "llvm" instead of "gnu": prior non-cuVS builds all used gnu, because intel-openmp from anaconda defaults channel does not require llvm-openmp. Now we need to remove the gnu one which is automatically pulled in during miniconda setup, and only keep the llvm version of _openmp_mutex. - liblief: The above changes tried to pull in liblief 0.15. This results in an error like `AttributeError: module 'lief._lief.ELF' has no attribute 'ELF_CLASS'`. When I checked passing PR builds on defaults, they use lief 0.12, so I pinned that one for Python 3.9 3.10 3.11. For Python 3.12, we need lief 0.14 or higher. - gcc_linux-64 =11.2 for faiss-gpu on cudatoolkit-11.2: GPU builds kept trying to reference 11.2 when 14.2 was installed. I couldn't figure out why, or how to point it to the 14.2 installed on the host. Current nightly builds still reference 11.2, so I gave up and pinned 11.2 to keep it the same. Moving to 14.2 will take some more investigation. - meta.yaml mkl 2023.0 vs 2023.1 with python versions: 3.9, 3.10, and 3.11 pass with 2023.0, but python 3.12 needs mkl 2023.1 or higher. Otherwise we get: ``` INTEL MKL ERROR: $PREFIX/lib/python3.12/site-packages/faiss/../../.././libmkl_def.so.2: undefined symbol: mkl_sparse_optimize_bsr_trsm_i8. Intel MKL FATAL ERROR: Cannot load libmkl_def.so.2. ``` so the solution was to put a bunch of conditions in in faiss/meta.yaml. We should be able to use Jinja macros to reduce duplication but it requires some investigation. It was failing: https://github.com/facebookresearch/faiss/actions/runs/12915187334/job/36016477707?pr=4126 (paste of logs here: P1716887936). This can be a future BE task. Macro example (the `-` signs remove whitespace lines before and after) ``` {% macro inclmkldevel() %} {%- if PY_VER == '3.9' or PY_VER == '3.10' or PY_VER == '3.11' -%} - mkl-devel =2023.0 # [x86_64] - liblief =0.12.3 # [not win] - python_abi <3.12 {%- elif PY_VER == '3.12' %} - mkl-devel >=2023.2.0 # [x86_64] - liblief =0.15.1 # [not win] - python_abi =3.12 {% endif -%} {% endmacro %} ``` The python_abi was required to be pinned inside these conditions because otherwise several builds got this error: ``` File "/Users/runner/miniconda3/lib/python3.12/site-packages/conda_build/utils.py", line 1919, in insert_variant_versions matches = [regex.match(pkg) for pkg in reqs] ^^^^^^^^^^^^^^^^ TypeError: expected string or bytes-like object, got 'list' ``` Unit test notes: - - test_gpu_basics.py: GPU residual quantizer: Debugged extensively with Matthijs. The problem is in the C++ -> Python conversion. The C++ side prints the right values, but when getting it back to Python, it is filled with junk data. It is only reproducible on CUDA 11.4.4 after switching channels. It is likely a compiler problem. We discussed, and resolved to create a C++ side unit test (so this diff creates TestGpuResidualQuantizer) to verify the functionality and disable the Python unit test, but leave it in the codebase with a comment. Matthijs made extensive notes in https://docs.google.com/document/d/1MjMdOpPgx-MArdrYJZCaQlRqlrhSj5Y1Z9lTyiab8jc/edit?usp=sharing . - test_contrib.py: this now hangs forever and times out the runner for Windows on Python 3.12. I have it skipping now. - test_mem_leak.cpp seems flaky. It sometimes fails, then passes with rerun. Unfixed issues: - - I noticed sometimes downloads will fail with the text like below. It passes on re-run. ``` libgomp-14.2.0-h77fa898_1.conda extraction failed Warning: error libmamba Error when extracting package: Could not chdir info/recipe/parent/patches/0005-Hardcode-HAVE_ALIGNED_ALLOC-1-in-libstdc-v3-configur.patch error libmamba Error when extracting package: Could not chdir info/recipe/parent/patches/0005-Hardcode-HAVE_ALIGNED_ALLOC-1-in-libstdc-v3-configur.patch Warning: Found incorrect download: libgomp. Aborting Found incorrect download: libgomp. Aborting Warning: ``` Green build and tests for both build pull request and nightlies: https://github.com/facebookresearch/faiss/actions/runs/12956402963/job/36148818361 Reviewed By: asadoughi Differential Revision: D68043874 fbshipit-source-id: b105a1e3e6272763ad9daab7fc6f05a79f01c9e2
2025-01-27 14:49:18 -08:00
import sys
from common_faiss_tests import get_dataset_2
from faiss.contrib import (
big_batch_search,
clustering,
datasets,
evaluation,
inspect_tools,
ivf_tools,
)
from faiss.contrib.exhaustive_search import (
exponential_query_iterator,
knn,
knn_ground_truth,
range_ground_truth,
range_search_max_results,
)
from faiss.contrib.ondisk import merge_ondisk
2020-08-03 22:15:02 +02:00
class TestComputeGT(unittest.TestCase):
def do_test_compute_GT(self, metric=faiss.METRIC_L2, ngpu=0):
2020-08-03 22:15:02 +02:00
d = 64
xt, xb, xq = get_dataset_2(d, 0, 10000, 100)
index = faiss.IndexFlat(d, metric)
2020-08-03 22:15:02 +02:00
index.add(xb)
Dref, Iref = index.search(xq, 10)
# iterator function on the matrix
def matrix_iterator(xb, bs):
for i0 in range(0, xb.shape[0], bs):
yield xb[i0:i0 + bs]
Dnew, Inew = knn_ground_truth(
xq, matrix_iterator(xb, 1000), 10, metric, ngpu=ngpu)
2020-08-03 22:15:02 +02:00
np.testing.assert_array_equal(Iref, Inew)
# decimal = 4 required when run on GPU
np.testing.assert_almost_equal(Dref, Dnew, decimal=4)
def test_compute_GT(self):
self.do_test_compute_GT()
def test_compute_GT_ip(self):
self.do_test_compute_GT(faiss.METRIC_INNER_PRODUCT)
def test_compute_GT_gpu(self):
self.do_test_compute_GT(ngpu=-1)
def test_compute_GT_ip_gpu(self):
self.do_test_compute_GT(faiss.METRIC_INNER_PRODUCT, ngpu=-1)
class TestDatasets(unittest.TestCase):
"""here we test only the synthetic dataset. Datasets that require
disk or manifold access are in
//deeplearning/projects/faiss-forge/test_faiss_datasets/:test_faiss_datasets
"""
def test_synthetic(self):
ds = datasets.SyntheticDataset(32, 1000, 2000, 10)
xq = ds.get_queries()
self.assertEqual(xq.shape, (10, 32))
xb = ds.get_database()
self.assertEqual(xb.shape, (2000, 32))
ds.check_sizes()
def test_synthetic_ip(self):
ds = datasets.SyntheticDataset(32, 1000, 2000, 10, "IP")
index = faiss.IndexFlatIP(32)
index.add(ds.get_database())
np.testing.assert_array_equal(
ds.get_groundtruth(100),
index.search(ds.get_queries(), 100)[1]
)
def test_synthetic_iterator(self):
ds = datasets.SyntheticDataset(32, 1000, 2000, 10)
xb = ds.get_database()
xb2 = []
for xbi in ds.database_iterator():
xb2.append(xbi)
xb2 = np.vstack(xb2)
np.testing.assert_array_equal(xb, xb2)
class TestExhaustiveSearch(unittest.TestCase):
def test_knn_cpu(self):
xb = np.random.rand(200, 32).astype('float32')
xq = np.random.rand(100, 32).astype('float32')
index = faiss.IndexFlatL2(32)
index.add(xb)
Dref, Iref = index.search(xq, 10)
Dnew, Inew = knn(xq, xb, 10)
assert np.all(Inew == Iref)
assert np.allclose(Dref, Dnew)
index = faiss.IndexFlatIP(32)
index.add(xb)
Dref, Iref = index.search(xq, 10)
Dnew, Inew = knn(xq, xb, 10, metric=faiss.METRIC_INNER_PRODUCT)
assert np.all(Inew == Iref)
assert np.allclose(Dref, Dnew)
def do_test_range(self, metric):
ds = datasets.SyntheticDataset(32, 0, 1000, 10)
xq = ds.get_queries()
xb = ds.get_database()
D, I = faiss.knn(xq, xb, 10, metric=metric)
threshold = float(D[:, -1].mean())
index = faiss.IndexFlat(32, metric)
index.add(xb)
ref_lims, ref_D, ref_I = index.range_search(xq, threshold)
new_lims, new_D, new_I = range_ground_truth(
xq, ds.database_iterator(bs=100), threshold, ngpu=0,
metric_type=metric)
evaluation.check_ref_range_results(
ref_lims, ref_D, ref_I,
new_lims, new_D, new_I
)
def test_range_L2(self):
self.do_test_range(faiss.METRIC_L2)
def test_range_IP(self):
self.do_test_range(faiss.METRIC_INNER_PRODUCT)
def test_query_iterator(self, metric=faiss.METRIC_L2):
ds = datasets.SyntheticDataset(32, 0, 1000, 1000)
xq = ds.get_queries()
xb = ds.get_database()
D, I = faiss.knn(xq, xb, 10, metric=metric)
threshold = float(D[:, -1].mean())
index = faiss.IndexFlat(32, metric)
index.add(xb)
ref_lims, ref_D, ref_I = index.range_search(xq, threshold)
def matrix_iterator(xb, bs):
for i0 in range(0, xb.shape[0], bs):
yield xb[i0:i0 + bs]
# check repro OK
_, new_lims, new_D, new_I = range_search_max_results(
index, matrix_iterator(xq, 100), threshold, max_results=1e10)
evaluation.check_ref_range_results(
ref_lims, ref_D, ref_I,
new_lims, new_D, new_I
)
max_res = ref_lims[-1] // 2
new_threshold, new_lims, new_D, new_I = range_search_max_results(
index, matrix_iterator(xq, 100), threshold, max_results=max_res)
self.assertLessEqual(new_lims[-1], max_res)
ref_lims, ref_D, ref_I = index.range_search(xq, new_threshold)
evaluation.check_ref_range_results(
ref_lims, ref_D, ref_I,
new_lims, new_D, new_I
)
class TestInspect(unittest.TestCase):
def test_LinearTransform(self):
# training data
xt = np.random.rand(1000, 20).astype('float32')
# test data
x = np.random.rand(10, 20).astype('float32')
# make the PCA matrix
pca = faiss.PCAMatrix(20, 10)
pca.train(xt)
# apply it to test data
yref = pca.apply_py(x)
A, b = inspect_tools.get_LinearTransform_matrix(pca)
# verify
ynew = x @ A.T + b
np.testing.assert_array_almost_equal(yref, ynew)
def test_IndexFlat(self):
xb = np.random.rand(13, 20).astype('float32')
index = faiss.IndexFlatL2(20)
index.add(xb)
np.testing.assert_array_equal(
xb, inspect_tools.get_flat_data(index)
)
def test_make_LT(self):
rs = np.random.RandomState(123)
X = rs.rand(13, 20).astype('float32')
A = rs.rand(5, 20).astype('float32')
b = rs.rand(5).astype('float32')
Yref = X @ A.T + b
lt = inspect_tools.make_LinearTransform_matrix(A, b)
Ynew = lt.apply(X)
np.testing.assert_allclose(Yref, Ynew, rtol=1e-06)
def test_NSG_neighbors(self):
# FIXME number of elements to add should be >> 100
ds = datasets.SyntheticDataset(32, 0, 200, 10)
index = faiss.index_factory(ds.d, "NSG")
index.add(ds.get_database())
neighbors = inspect_tools.get_NSG_neighbors(index.nsg)
# neighbors should be either valid indexes or -1
np.testing.assert_array_less(-2, neighbors)
np.testing.assert_array_less(neighbors, ds.nb)
class TestRangeEval(unittest.TestCase):
def test_precision_recall(self):
Iref = [
[1, 2, 3],
[5, 6],
[],
[]
]
Inew = [
[1, 2],
[6, 7],
[1],
[]
]
lims_ref = np.cumsum([0] + [len(x) for x in Iref])
Iref = np.hstack(Iref)
lims_new = np.cumsum([0] + [len(x) for x in Inew])
Inew = np.hstack(Inew)
precision, recall = evaluation.range_PR(lims_ref, Iref, lims_new, Inew)
self.assertEqual(precision, 0.6)
self.assertEqual(recall, 0.6)
def test_PR_multiple(self):
metric = faiss.METRIC_L2
ds = datasets.SyntheticDataset(32, 1000, 1000, 10)
xq = ds.get_queries()
xb = ds.get_database()
# good for ~10k results
threshold = 15
index = faiss.IndexFlat(32, metric)
index.add(xb)
ref_lims, ref_D, ref_I = index.range_search(xq, threshold)
# now make a slightly suboptimal index
index2 = faiss.index_factory(32, "PCA16,Flat")
index2.train(ds.get_train())
index2.add(xb)
# PCA reduces distances so will have more results
new_lims, new_D, new_I = index2.range_search(xq, threshold)
all_thr = np.array([5.0, 10.0, 12.0, 15.0])
for mode in "overall", "average":
ref_precisions = np.zeros_like(all_thr)
ref_recalls = np.zeros_like(all_thr)
for i, thr in enumerate(all_thr):
lims2, _, I2 = evaluation.filter_range_results(
new_lims, new_D, new_I, thr)
prec, recall = evaluation.range_PR(
ref_lims, ref_I, lims2, I2, mode=mode)
ref_precisions[i] = prec
ref_recalls[i] = recall
precisions, recalls = evaluation.range_PR_multiple_thresholds(
ref_lims, ref_I,
new_lims, new_D, new_I, all_thr,
mode=mode
)
np.testing.assert_array_almost_equal(ref_precisions, precisions)
np.testing.assert_array_almost_equal(ref_recalls, recalls)
class TestPreassigned(unittest.TestCase):
def test_index_pretransformed(self):
ds = datasets.SyntheticDataset(128, 2000, 2000, 200)
xt = ds.get_train()
xq = ds.get_queries()
xb = ds.get_database()
index = faiss.index_factory(128, 'PCA64,IVF64,PQ4np')
index.train(xt)
index.add(xb)
index_downcasted = faiss.extract_index_ivf(index)
index_downcasted.nprobe = 10
xq_trans = index.chain.at(0).apply_py(xq)
D_ref, I_ref = index.search(xq, 4)
quantizer = index_downcasted.quantizer
Dq, Iq = quantizer.search(xq_trans, index_downcasted.nprobe)
D, I = ivf_tools.search_preassigned(index, xq, 4, Iq, Dq)
np.testing.assert_almost_equal(D_ref, D, decimal=4)
np.testing.assert_array_equal(I_ref, I)
def test_float(self):
ds = datasets.SyntheticDataset(128, 2000, 2000, 200)
d = ds.d
xt = ds.get_train()
xq = ds.get_queries()
xb = ds.get_database()
# define alternative quantizer on the 20 first dims of vectors
km = faiss.Kmeans(20, 50)
km.train(xt[:, :20].copy())
alt_quantizer = km.index
index = faiss.index_factory(d, "IVF50,PQ16np")
index.by_residual = False
# (optional) fake coarse quantizer
fake_centroids = np.zeros((index.nlist, index.d), dtype="float32")
index.quantizer.add(fake_centroids)
# train the PQ part
index.train(xt)
# add elements xb
a = alt_quantizer.search(xb[:, :20].copy(), 1)[1].ravel()
ivf_tools.add_preassigned(index, xb, a)
# search elements xq, increase nprobe, check 4 first results w/
# groundtruth
prev_inter_perf = 0
for nprobe in 1, 10, 20:
index.nprobe = nprobe
a = alt_quantizer.search(xq[:, :20].copy(), index.nprobe)[1]
D, I = ivf_tools.search_preassigned(index, xq, 4, a)
inter_perf = faiss.eval_intersection(
I, ds.get_groundtruth()[:, :4])
self.assertTrue(inter_perf >= prev_inter_perf)
prev_inter_perf = inter_perf
# test range search
index.nprobe = 20
a = alt_quantizer.search(xq[:, :20].copy(), index.nprobe)[1]
# just to find a reasonable radius
D, I = ivf_tools.search_preassigned(index, xq, 4, a)
radius = D.max() * 1.01
lims, DR, IR = ivf_tools.range_search_preassigned(index, xq, radius, a)
# with that radius the k-NN results are a subset of the range search
# results
for q in range(len(xq)):
l0, l1 = lims[q], lims[q + 1]
self.assertTrue(set(I[q]) <= set(IR[l0:l1]))
Migration off defaults to conda-forge channel (#4126) Summary: Pull Request resolved: https://github.com/facebookresearch/faiss/pull/4126 Good resource on overriding channels to make sure we aren't using `defaults`:https://stackoverflow.com/questions/67695893/how-do-i-completely-purge-and-disable-the-default-channel-in-anaconda-and-switch Explanation of changes: - - changed to miniforge from miniconda: this ensures we only pull in from conda-defaults when creating the environment - architecture: ARM64 and aarch64 are the same thing. But there is no miniforge package for ARM64, so we need to make it check for aarch64 instead. However, mac breaks this rule, and does have macOS-arm64! So there is a conditional for mac to use arm64. https://github.com/conda-forge/miniforge/releases/ - action.yml mkl 2022.2.1 change: conda-forge and defaults have completely different dependencies. Defaults required intel-openmp, but now on conda-forge, mkl 2023.1 or higher requires llvm-openmp >=14.0.6, but this is incompatible with the pytorch build <2.5 which requires llvm-openmp<14.0. We would need to upgrade Python to 3.12 first, upgrade Pytorch build, then upgrade this mkl. (The meta.yaml changes are the ones that narrow it to 2022.2.1 during `conda build faiss`.) So, this has just been changed to 2022.2.1. - mkl now requires _openmp_mutex of type "llvm" instead of "gnu": prior non-cuVS builds all used gnu, because intel-openmp from anaconda defaults channel does not require llvm-openmp. Now we need to remove the gnu one which is automatically pulled in during miniconda setup, and only keep the llvm version of _openmp_mutex. - liblief: The above changes tried to pull in liblief 0.15. This results in an error like `AttributeError: module 'lief._lief.ELF' has no attribute 'ELF_CLASS'`. When I checked passing PR builds on defaults, they use lief 0.12, so I pinned that one for Python 3.9 3.10 3.11. For Python 3.12, we need lief 0.14 or higher. - gcc_linux-64 =11.2 for faiss-gpu on cudatoolkit-11.2: GPU builds kept trying to reference 11.2 when 14.2 was installed. I couldn't figure out why, or how to point it to the 14.2 installed on the host. Current nightly builds still reference 11.2, so I gave up and pinned 11.2 to keep it the same. Moving to 14.2 will take some more investigation. - meta.yaml mkl 2023.0 vs 2023.1 with python versions: 3.9, 3.10, and 3.11 pass with 2023.0, but python 3.12 needs mkl 2023.1 or higher. Otherwise we get: ``` INTEL MKL ERROR: $PREFIX/lib/python3.12/site-packages/faiss/../../.././libmkl_def.so.2: undefined symbol: mkl_sparse_optimize_bsr_trsm_i8. Intel MKL FATAL ERROR: Cannot load libmkl_def.so.2. ``` so the solution was to put a bunch of conditions in in faiss/meta.yaml. We should be able to use Jinja macros to reduce duplication but it requires some investigation. It was failing: https://github.com/facebookresearch/faiss/actions/runs/12915187334/job/36016477707?pr=4126 (paste of logs here: P1716887936). This can be a future BE task. Macro example (the `-` signs remove whitespace lines before and after) ``` {% macro inclmkldevel() %} {%- if PY_VER == '3.9' or PY_VER == '3.10' or PY_VER == '3.11' -%} - mkl-devel =2023.0 # [x86_64] - liblief =0.12.3 # [not win] - python_abi <3.12 {%- elif PY_VER == '3.12' %} - mkl-devel >=2023.2.0 # [x86_64] - liblief =0.15.1 # [not win] - python_abi =3.12 {% endif -%} {% endmacro %} ``` The python_abi was required to be pinned inside these conditions because otherwise several builds got this error: ``` File "/Users/runner/miniconda3/lib/python3.12/site-packages/conda_build/utils.py", line 1919, in insert_variant_versions matches = [regex.match(pkg) for pkg in reqs] ^^^^^^^^^^^^^^^^ TypeError: expected string or bytes-like object, got 'list' ``` Unit test notes: - - test_gpu_basics.py: GPU residual quantizer: Debugged extensively with Matthijs. The problem is in the C++ -> Python conversion. The C++ side prints the right values, but when getting it back to Python, it is filled with junk data. It is only reproducible on CUDA 11.4.4 after switching channels. It is likely a compiler problem. We discussed, and resolved to create a C++ side unit test (so this diff creates TestGpuResidualQuantizer) to verify the functionality and disable the Python unit test, but leave it in the codebase with a comment. Matthijs made extensive notes in https://docs.google.com/document/d/1MjMdOpPgx-MArdrYJZCaQlRqlrhSj5Y1Z9lTyiab8jc/edit?usp=sharing . - test_contrib.py: this now hangs forever and times out the runner for Windows on Python 3.12. I have it skipping now. - test_mem_leak.cpp seems flaky. It sometimes fails, then passes with rerun. Unfixed issues: - - I noticed sometimes downloads will fail with the text like below. It passes on re-run. ``` libgomp-14.2.0-h77fa898_1.conda extraction failed Warning: error libmamba Error when extracting package: Could not chdir info/recipe/parent/patches/0005-Hardcode-HAVE_ALIGNED_ALLOC-1-in-libstdc-v3-configur.patch error libmamba Error when extracting package: Could not chdir info/recipe/parent/patches/0005-Hardcode-HAVE_ALIGNED_ALLOC-1-in-libstdc-v3-configur.patch Warning: Found incorrect download: libgomp. Aborting Found incorrect download: libgomp. Aborting Warning: ``` Green build and tests for both build pull request and nightlies: https://github.com/facebookresearch/faiss/actions/runs/12956402963/job/36148818361 Reviewed By: asadoughi Differential Revision: D68043874 fbshipit-source-id: b105a1e3e6272763ad9daab7fc6f05a79f01c9e2
2025-01-27 14:49:18 -08:00
@unittest.skipIf(
platform.system() == 'Windows'
and sys.version_info[0] == 3
and sys.version_info[1] == 12,
'test_binary hangs for Windows on Python 3.12.'
)
def test_binary(self):
ds = datasets.SyntheticDataset(128, 2000, 2000, 200)
d = ds.d
xt = ds.get_train()
xq = ds.get_queries()
xb = ds.get_database()
# define alternative quantizer on the 20 first dims of vectors
# (will be in float)
km = faiss.Kmeans(20, 50)
km.train(xt[:, :20].copy())
alt_quantizer = km.index
binarizer = faiss.index_factory(d, "ITQ,LSHt")
binarizer.train(xt)
xb_bin = binarizer.sa_encode(xb)
xq_bin = binarizer.sa_encode(xq)
index = faiss.index_binary_factory(d, "BIVF200")
fake_centroids = np.zeros((index.nlist, index.d // 8), dtype="uint8")
index.quantizer.add(fake_centroids)
index.is_trained = True
# add elements xb
a = alt_quantizer.search(xb[:, :20].copy(), 1)[1].ravel()
ivf_tools.add_preassigned(index, xb_bin, a)
# recompute GT in binary
k = 15
ib = faiss.IndexBinaryFlat(128)
ib.add(xb_bin)
Dgt, Igt = ib.search(xq_bin, k)
# search elements xq, increase nprobe, check 4 first results w/
# groundtruth
prev_inter_perf = 0
for nprobe in 1, 10, 20:
index.nprobe = nprobe
a = alt_quantizer.search(xq[:, :20].copy(), index.nprobe)[1]
D, I = ivf_tools.search_preassigned(index, xq_bin, k, a)
inter_perf = faiss.eval_intersection(I, Igt)
self.assertGreaterEqual(inter_perf, prev_inter_perf)
prev_inter_perf = inter_perf
# test range search
index.nprobe = 20
a = alt_quantizer.search(xq[:, :20].copy(), index.nprobe)[1]
# just to find a reasonable radius
D, I = ivf_tools.search_preassigned(index, xq_bin, 4, a)
radius = int(D.max() + 1)
lims, DR, IR = ivf_tools.range_search_preassigned(
index, xq_bin, radius, a)
# with that radius the k-NN results are a subset of the range
# search results
for q in range(len(xq)):
l0, l1 = lims[q], lims[q + 1]
self.assertTrue(set(I[q]) <= set(IR[l0:l1]))
class TestRangeSearchMaxResults(unittest.TestCase):
def do_test(self, metric_type):
ds = datasets.SyntheticDataset(32, 0, 1000, 200)
index = faiss.IndexFlat(ds.d, metric_type)
index.add(ds.get_database())
# find a reasonable radius
D, _ = index.search(ds.get_queries(), 10)
radius0 = float(np.median(D[:, -1]))
# baseline = search with that radius
lims_ref, Dref, Iref = index.range_search(ds.get_queries(), radius0)
# now see if using just the total number of results, we can get back
# the same result table
query_iterator = exponential_query_iterator(ds.get_queries())
init_radius = 1e10 if metric_type == faiss.METRIC_L2 else -1e10
radius1, lims_new, Dnew, Inew = range_search_max_results(
index, query_iterator, init_radius,
min_results=Dref.size, clip_to_min=True
)
evaluation.check_ref_range_results(
lims_ref, Dref, Iref,
lims_new, Dnew, Inew
)
def test_L2(self):
self.do_test(faiss.METRIC_L2)
def test_IP(self):
self.do_test(faiss.METRIC_INNER_PRODUCT)
def test_binary(self):
ds = datasets.SyntheticDataset(64, 1000, 1000, 200)
tobinary = faiss.index_factory(ds.d, "LSHrt")
tobinary.train(ds.get_train())
index = faiss.IndexBinaryFlat(ds.d)
xb = tobinary.sa_encode(ds.get_database())
xq = tobinary.sa_encode(ds.get_queries())
index.add(xb)
# find a reasonable radius
D, _ = index.search(xq, 10)
radius0 = int(np.median(D[:, -1]))
# baseline = search with that radius
lims_ref, Dref, Iref = index.range_search(xq, radius0)
# now see if using just the total number of results, we can get back
# the same result table
query_iterator = exponential_query_iterator(xq)
radius1, lims_new, Dnew, Inew = range_search_max_results(
index, query_iterator, ds.d // 2,
min_results=Dref.size, clip_to_min=True
)
evaluation.check_ref_range_results(
lims_ref, Dref, Iref,
lims_new, Dnew, Inew
)
class TestClustering(unittest.TestCase):
def test_python_kmeans(self):
""" Test the python implementation of kmeans """
ds = datasets.SyntheticDataset(32, 10000, 0, 0)
x = ds.get_train()
# bad distribution to stress-test split code
xt = x[:10000].copy()
xt[:5000] = x[0]
km_ref = faiss.Kmeans(ds.d, 100, niter=10)
km_ref.train(xt)
err = faiss.knn(xt, km_ref.centroids, 1)[0].sum()
data = clustering.DatasetAssign(xt)
centroids = clustering.kmeans(100, data, 10)
err2 = faiss.knn(xt, centroids, 1)[0].sum()
# err=33498.332 err2=33380.477
self.assertLess(err2, err * 1.1)
def test_2level(self):
" verify that 2-level clustering is not too sub-optimal "
ds = datasets.SyntheticDataset(32, 10000, 0, 0)
xt = ds.get_train()
km_ref = faiss.Kmeans(ds.d, 100)
km_ref.train(xt)
err = faiss.knn(xt, km_ref.centroids, 1)[0].sum()
centroids2, _ = clustering.two_level_clustering(xt, 10, 100)
err2 = faiss.knn(xt, centroids2, 1)[0].sum()
self.assertLess(err2, err * 1.1)
def test_ivf_train_2level(self):
" check 2-level clustering with IVF training "
ds = datasets.SyntheticDataset(32, 10000, 1000, 200)
index = faiss.index_factory(ds.d, "PCA16,IVF100,SQ8")
faiss.extract_index_ivf(index).nprobe = 10
index.train(ds.get_train())
index.add(ds.get_database())
Dref, Iref = index.search(ds.get_queries(), 1)
index = faiss.index_factory(ds.d, "PCA16,IVF100,SQ8")
faiss.extract_index_ivf(index).nprobe = 10
clustering.train_ivf_index_with_2level(
index, ds.get_train(), verbose=True, rebalance=False)
index.add(ds.get_database())
Dnew, Inew = index.search(ds.get_queries(), 1)
# normally 47 / 200 differences
ndiff = (Iref != Inew).sum()
self.assertLess(ndiff, 53)
class TestBigBatchSearch(unittest.TestCase):
def do_test(self, factory_string, metric=faiss.METRIC_L2):
# ds = datasets.SyntheticDataset(32, 2000, 4000, 1000)
ds = datasets.SyntheticDataset(32, 2000, 400, 500)
k = 10
index = faiss.index_factory(ds.d, factory_string, metric)
assert index.metric_type == metric
index.train(ds.get_train())
index.add(ds.get_database())
index.nprobe = 5
Dref, Iref = index.search(ds.get_queries(), k)
# faiss.omp_set_num_threads(1)
for method in ("pairwise_distances", "knn_function", "index"):
for threaded in 0, 1, 2:
Dnew, Inew = big_batch_search.big_batch_search(
index, ds.get_queries(),
k, method=method,
threaded=threaded
)
self.assertLess((Inew != Iref).sum() / Iref.size, 1e-4)
np.testing.assert_almost_equal(Dnew, Dref, decimal=4)
def test_Flat(self):
self.do_test("IVF64,Flat")
def test_Flat_IP(self):
self.do_test("IVF64,Flat", metric=faiss.METRIC_INNER_PRODUCT)
def test_PQ(self):
self.do_test("IVF64,PQ4np")
def test_SQ(self):
self.do_test("IVF64,SQ8")
def test_checkpoint(self):
ds = datasets.SyntheticDataset(32, 2000, 400, 500)
k = 10
index = faiss.index_factory(ds.d, "IVF64,SQ8")
index.train(ds.get_train())
index.add(ds.get_database())
index.nprobe = 5
Dref, Iref = index.search(ds.get_queries(), k)
checkpoint = tempfile.mktemp()
try:
# First big batch search
try:
Dnew, Inew = big_batch_search.big_batch_search(
index, ds.get_queries(),
k, method="knn_function",
threaded=2,
checkpoint=checkpoint, checkpoint_freq=0.1,
crash_at=20
)
except ZeroDivisionError:
pass
else:
self.assertFalse("should have crashed")
# Second big batch search
Dnew, Inew = big_batch_search.big_batch_search(
index, ds.get_queries(),
k, method="knn_function",
threaded=2,
checkpoint=checkpoint, checkpoint_freq=5
)
self.assertLess((Inew != Iref).sum() / Iref.size, 1e-4)
np.testing.assert_almost_equal(Dnew, Dref, decimal=4)
finally:
if os.path.exists(checkpoint):
os.unlink(checkpoint)
class TestInvlistSort(unittest.TestCase):
def test_sort(self):
""" make sure that the search results do not change
after sorting the inverted lists """
ds = datasets.SyntheticDataset(32, 2000, 200, 20)
index = faiss.index_factory(ds.d, "IVF50,SQ8")
index.train(ds.get_train())
index.add(ds.get_database())
index.nprobe = 5
Dref, Iref = index.search(ds.get_queries(), 5)
ivf_tools.sort_invlists_by_size(index)
list_sizes = ivf_tools.get_invlist_sizes(index.invlists)
assert np.all(list_sizes[1:] >= list_sizes[:-1])
Dnew, Inew = index.search(ds.get_queries(), 5)
np.testing.assert_equal(Dnew, Dref)
np.testing.assert_equal(Inew, Iref)
def test_hnsw_permute(self):
"""
make sure HNSW permutation works
(useful when used as coarse quantizer)
"""
ds = datasets.SyntheticDataset(32, 0, 1000, 50)
index = faiss.index_factory(ds.d, "HNSW32,Flat")
index.add(ds.get_database())
Dref, Iref = index.search(ds.get_queries(), 5)
rs = np.random.RandomState(1234)
perm = rs.permutation(index.ntotal)
index.permute_entries(perm)
Dnew, Inew = index.search(ds.get_queries(), 5)
np.testing.assert_equal(Dnew, Dref)
Inew_remap = perm[Inew]
np.testing.assert_equal(Inew_remap, Iref)
class TestCodeSet(unittest.TestCase):
def test_code_set(self):
""" CodeSet and np.unique should produce the same output """
d = 8
n = 1000 # > 256 and using only 0 or 1 so there must be duplicates
codes = np.random.randint(0, 2, (n, d), dtype=np.uint8)
s = faiss.CodeSet(d)
inserted = s.insert(codes)
np.testing.assert_equal(
np.sort(np.unique(codes, axis=0), axis=None),
np.sort(codes[inserted], axis=None))
@unittest.skipIf(
platform.system() == 'Windows',
'OnDiskInvertedLists is unsupported on Windows.'
)
class TestMerge(unittest.TestCase):
@contextmanager
def temp_directory(self):
temp_dir = tempfile.mkdtemp()
try:
yield temp_dir
finally:
shutil.rmtree(temp_dir)
def do_test_ondisk_merge(self, shift_ids=False):
with self.temp_directory() as tmpdir:
# only train and add index to disk without adding elements.
# this will create empty inverted lists.
ds = datasets.SyntheticDataset(32, 2000, 200, 20)
index = faiss.index_factory(ds.d, "IVF32,Flat")
index.train(ds.get_train())
faiss.write_index(index, tmpdir + "/trained.index")
# create 4 shards and add elements to them
ns = 4 # number of shards
for bno in range(ns):
index = faiss.read_index(tmpdir + "/trained.index")
i0, i1 = int(bno * ds.nb / ns), int((bno + 1) * ds.nb / ns)
if shift_ids:
index.add_with_ids(ds.xb[i0:i1], np.arange(0, ds.nb / ns))
else:
index.add_with_ids(ds.xb[i0:i1], np.arange(i0, i1))
faiss.write_index(index, tmpdir + "/block_%d.index" % bno)
# construct the output index and merge them on disk
index = faiss.read_index(tmpdir + "/trained.index")
block_fnames = [tmpdir + "/block_%d.index" % bno for bno in range(4)]
merge_ondisk(
index, block_fnames, tmpdir + "/merged_index.ivfdata", shift_ids
)
faiss.write_index(index, tmpdir + "/populated.index")
# perform a search from index on disk
index = faiss.read_index(tmpdir + "/populated.index")
index.nprobe = 5
D, I = index.search(ds.xq, 5)
# ground-truth
gtI = ds.get_groundtruth(5)
recall_at_1 = (I[:, :1] == gtI[:, :1]).sum() / float(ds.xq.shape[0])
self.assertGreaterEqual(recall_at_1, 0.5)
def test_ondisk_merge(self):
self.do_test_ondisk_merge()
def test_ondisk_merge_with_shift_ids(self):
# verified that recall is same for test_ondisk_merge and
self.do_test_ondisk_merge(True)