faiss/tests/test_fast_scan.py

590 lines
17 KiB
Python
Raw Normal View History

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import time
import os
import tempfile
import numpy as np
import faiss
from faiss.contrib import datasets
import platform
class TestCompileOptions(unittest.TestCase):
def test_compile_options(self):
options = faiss.get_compile_options()
options = options.split(' ')
for option in options:
assert option in ['AVX2', 'NEON', 'GENERIC', 'OPTIMIZE']
class TestSearch(unittest.TestCase):
def test_PQ4_accuracy(self):
ds = datasets.SyntheticDataset(32, 2000, 5000, 1000)
index_gt = faiss.IndexFlatL2(32)
index_gt.add(ds.get_database())
Dref, Iref = index_gt.search(ds.get_queries(), 10)
index = faiss.index_factory(32, 'PQ16x4fs')
index.train(ds.get_train())
index.add(ds.get_database())
Da, Ia = index.search(ds.get_queries(), 10)
nq = Iref.shape[0]
recall_at_1 = (Iref[:, 0] == Ia[:, 0]).sum() / nq
assert recall_at_1 > 0.6
# print(f'recall@1 = {recall_at_1:.3f}')
# This is an experiment to see if we can catch performance
# regressions. It runs 2 codes, one should be faster than the
# other by a factor ~10 in opt mode. We check for a factor 5.
# hopefully the jitter in executtion time will not produce
# too many spurious test failures. Unoptimized timings are
# not exploitable, hence the flag test on that as well.
@unittest.skipUnless(
('AVX2' in faiss.get_compile_options() or
'NEON' in faiss.get_compile_options()) and
"OPTIMIZE" in faiss.get_compile_options(),
"only test while building with avx2 or neon")
def test_PQ4_speed(self):
ds = datasets.SyntheticDataset(32, 2000, 5000, 1000)
xt = ds.get_train()
xb = ds.get_database()
xq = ds.get_queries()
index = faiss.index_factory(32, 'PQ16x4')
index.train(xt)
index.add(xb)
t0 = time.time()
D1, I1 = index.search(xq, 10)
t1 = time.time()
pq_t = t1 - t0
print('PQ16x4 search time:', pq_t)
index2 = faiss.index_factory(32, 'PQ16x4fs')
index2.train(xt)
index2.add(xb)
t0 = time.time()
D2, I2 = index2.search(xq, 10)
t1 = time.time()
pqfs_t = t1 - t0
print('PQ16x4fs search time:', pqfs_t)
self.assertLess(pqfs_t * 5, pq_t)
class TestRounding(unittest.TestCase):
def do_test_rounding(self, implem=4, metric=faiss.METRIC_L2):
ds = datasets.SyntheticDataset(32, 2000, 5000, 200)
index = faiss.index_factory(32, 'PQ16x4', metric)
index.train(ds.get_train())
index.add(ds.get_database())
Dref, Iref = index.search(ds.get_queries(), 10)
nq = Iref.shape[0]
index2 = faiss.IndexPQFastScan(index)
# simply repro normal search
index2.implem = 2
D2, I2 = index2.search(ds.get_queries(), 10)
np.testing.assert_array_equal(I2, Iref)
np.testing.assert_array_equal(D2, Dref)
# rounded LUT with correction
index2.implem = implem
D4, I4 = index2.search(ds.get_queries(), 10)
# check accuracy of indexes
recalls = {}
for rank in 1, 10:
recalls[rank] = (Iref[:, :1] == I4[:, :rank]).sum() / nq
min_r1 = 0.98 if metric == faiss.METRIC_INNER_PRODUCT else 0.99
self.assertGreaterEqual(recalls[1], min_r1)
self.assertGreater(recalls[10], 0.995)
# check accuracy of distances
# err3 = ((D3 - D2) ** 2).sum()
err4 = ((D4 - D2) ** 2).sum()
nf = (D2 ** 2).sum()
self.assertLess(err4, nf * 1e-4)
def test_implem_4(self):
self.do_test_rounding(4)
def test_implem_4_ip(self):
self.do_test_rounding(4, faiss.METRIC_INNER_PRODUCT)
def test_implem_12(self):
self.do_test_rounding(12)
def test_implem_12_ip(self):
self.do_test_rounding(12, faiss.METRIC_INNER_PRODUCT)
def test_implem_14(self):
self.do_test_rounding(14)
def test_implem_14_ip(self):
self.do_test_rounding(12, faiss.METRIC_INNER_PRODUCT)
#########################################################
# Kernel unit test
#########################################################
def reference_accu(codes, LUT):
nq, nsp, is_16 = LUT.shape
nb, nsp_2 = codes.shape
assert is_16 == 16
assert nsp_2 == nsp // 2
accu = np.zeros((nq, nb), 'uint16')
for i in range(nq):
for j in range(nb):
a = np.uint16(0)
for sp in range(0, nsp, 2):
c = codes[j, sp // 2]
a += LUT[i, sp , c & 15].astype('uint16')
a += LUT[i, sp + 1, c >> 4].astype('uint16')
accu[i, j] = a
return accu
# disabled because the function to write to mem is not implemented currently
class ThisIsNotATestLoop5: # (unittest.TestCase):
def do_loop5_kernel(self, nq, bb):
""" unit test for the accumulation kernel """
nb = bb * 32 # databse size
nsp = 24 # number of sub-quantizers
rs = np.random.RandomState(123)
codes = rs.randint(256, size=(nb, nsp // 2)).astype('uint8')
LUT = rs.randint(256, size=(nq, nsp, 16)).astype('uint8')
accu_ref = reference_accu(codes, LUT)
def to_A(x):
return faiss.array_to_AlignedTable(x.ravel())
sp = faiss.swig_ptr
LUT_a = faiss.AlignedTableUint8(LUT.size)
faiss.pq4_pack_LUT(
nq, nsp, sp(LUT),
LUT_a.get()
)
codes_a = faiss.AlignedTableUint8(codes.size)
faiss.pq4_pack_codes(
sp(codes),
nb, nsp, nb, nb, nsp,
codes_a.get()
)
accu_a = faiss.AlignedTableUint16(nq * nb)
accu_a.clear()
faiss.loop5_kernel_accumulate_1_block_to_mem(
nq, nb, nsp, codes_a.get(), LUT_a.get(), accu_a.get()
)
accu = faiss.AlignedTable_to_array(accu_a).reshape(nq, nb)
np.testing.assert_array_equal(accu_ref, accu)
def test_11(self):
self.do_loop5_kernel(1, 1)
def test_21(self):
self.do_loop5_kernel(2, 1)
def test_12(self):
self.do_loop5_kernel(1, 2)
def test_22(self):
self.do_loop5_kernel(2, 2)
##########################################################
# Tests for various IndexPQFastScan implementations
##########################################################
def verify_with_draws(testcase, Dref, Iref, Dnew, Inew):
""" verify a list of results where there are draws in the distances (because
they are integer). """
np.testing.assert_array_almost_equal(Dref, Dnew, decimal=5)
# here we have to be careful because of draws
for i in range(len(Iref)):
if np.all(Iref[i] == Inew[i]): # easy case
continue
# we can deduce nothing about the latest line
skip_dis = Dref[i, -1]
for dis in np.unique(Dref):
if dis == skip_dis:
continue
mask = Dref[i, :] == dis
testcase.assertEqual(set(Iref[i, mask]), set(Inew[i, mask]))
class TestImplems(unittest.TestCase):
def __init__(self, *args):
unittest.TestCase.__init__(self, *args)
self.cache = {}
self.k = 10
def get_index(self, d, metric):
if (d, metric) not in self.cache:
ds = datasets.SyntheticDataset(d, 1000, 2000, 200)
target_size = d // 2
index = faiss.index_factory(d, 'PQ%dx4' % target_size, metric)
index.train(ds.get_train())
index.add(ds.get_database())
index2 = faiss.IndexPQFastScan(index)
# uint8 LUT but no SIMD
index2.implem = 4
Dref, Iref = index2.search(ds.get_queries(), 10)
self.cache[(d, metric)] = (ds, index, Dref, Iref)
return self.cache[(d, metric)]
def do_with_params(self, d, params, metric=faiss.METRIC_L2):
ds, index, Dref, Iref = self.get_index(d, metric)
index2 = self.build_fast_scan_index(index, params)
Dnew, Inew = index2.search(ds.get_queries(), self.k)
Dref = Dref[:, :self.k]
Iref = Iref[:, :self.k]
verify_with_draws(self, Dref, Iref, Dnew, Inew)
def build_fast_scan_index(self, index, params):
index2 = faiss.IndexPQFastScan(index)
index2.implem = 5
return index2
class TestImplem12(TestImplems):
def build_fast_scan_index(self, index, qbs):
index2 = faiss.IndexPQFastScan(index)
index2.qbs = qbs
index2.implem = 12
return index2
def test_qbs7(self):
self.do_with_params(32, 0x223)
def test_qbs7b(self):
self.do_with_params(32, 0x133)
def test_qbs6(self):
self.do_with_params(32, 0x33)
def test_qbs6_ip(self):
self.do_with_params(32, 0x33, faiss.METRIC_INNER_PRODUCT)
def test_qbs6b(self):
# test codepath where qbs is not known at compile time
self.do_with_params(32, 0x1113)
def test_qbs6_odd_dim(self):
self.do_with_params(30, 0x33)
class TestImplem13(TestImplems):
def build_fast_scan_index(self, index, qbs):
index2 = faiss.IndexPQFastScan(index)
index2.qbs = qbs
index2.implem = 13
return index2
def test_qbs7(self):
self.do_with_params(32, 0x223)
def test_qbs7_k1(self):
self.k = 1
self.do_with_params(32, 0x223)
class TestImplem14(TestImplems):
def build_fast_scan_index(self, index, params):
qbs, bbs = params
index2 = faiss.IndexPQFastScan(index, bbs)
index2.qbs = qbs
index2.implem = 14
return index2
def test_1_32(self):
self.do_with_params(32, (1, 32))
def test_1_64(self):
self.do_with_params(32, (1, 64))
def test_2_32(self):
self.do_with_params(32, (2, 32))
def test_2_64(self):
self.do_with_params(32, (2, 64))
def test_qbs_1_32_k1(self):
self.k = 1
self.do_with_params(32, (1, 32))
def test_qbs_1_64_k1(self):
self.k = 1
self.do_with_params(32, (1, 64))
def test_1_32_odd_dim(self):
self.do_with_params(30, (1, 32))
def test_1_64_odd_dim(self):
self.do_with_params(30, (1, 64))
class TestImplem15(TestImplems):
def build_fast_scan_index(self, index, params):
qbs, bbs = params
index2 = faiss.IndexPQFastScan(index, bbs)
index2.qbs = qbs
index2.implem = 15
return index2
def test_1_32(self):
self.do_with_params(32, (1, 32))
def test_2_64(self):
self.do_with_params(32, (2, 64))
class TestAdd(unittest.TestCase):
def do_test_add(self, d, bbs):
ds = datasets.SyntheticDataset(d, 2000, 5000, 200)
index = faiss.index_factory(d, f'PQ{d//2}x4np')
index.train(ds.get_train())
xb = ds.get_database()
index.add(xb[:1235])
index2 = faiss.IndexPQFastScan(index, bbs)
index2.add(xb[1235:])
new_codes = faiss.AlignedTable_to_array(index2.codes)
index.add(xb[1235:])
index3 = faiss.IndexPQFastScan(index, bbs)
ref_codes = faiss.AlignedTable_to_array(index3.codes)
self.assertEqual(index3.ntotal, index2.ntotal)
np.testing.assert_array_equal(ref_codes, new_codes)
def test_add(self):
self.do_test_add(32, 32)
def test_add_bbs64(self):
self.do_test_add(32, 64)
def test_add_odd_d(self):
self.do_test_add(30, 64)
def test_constructor(self):
d = 32
ds = datasets.SyntheticDataset(d, 2000, 5000, 200)
index = faiss.index_factory(d, f'PQ{d//2}x4np')
index.train(ds.get_train())
index.add(ds.get_database())
Dref, Iref = index.search(ds.get_queries(), 10)
nq = Iref.shape[0]
index2 = faiss.IndexPQFastScan(d, d // 2, 4)
index2.train(ds.get_train())
index2.add(ds.get_database())
Dnew, Inew = index2.search(ds.get_queries(), 10)
recall_at_1 = (Iref[:, 0] == Inew[:, 0]).sum() / nq
self.assertGreaterEqual(recall_at_1, 0.99)
data = faiss.serialize_index(index2)
index3 = faiss.deserialize_index(data)
self.assertEqual(index2.implem, index3.implem)
D3, I3 = index3.search(ds.get_queries(), 10)
np.testing.assert_array_equal(D3, Dnew)
np.testing.assert_array_equal(I3, Inew)
class TestAQFastScan(unittest.TestCase):
def subtest_accuracy(self, aq, st, implem, metric_type='L2'):
"""
Compare IndexAdditiveQuantizerFastScan with IndexAQ (qint8)
"""
d = 16
ds = datasets.SyntheticDataset(d, 1000, 2000, 1000, metric_type)
gt = ds.get_groundtruth(k=1)
if metric_type == 'L2':
metric = faiss.METRIC_L2
postfix1 = '_Nqint8'
postfix2 = f'_N{st}2x4'
else:
metric = faiss.METRIC_INNER_PRODUCT
postfix1 = postfix2 = ''
index = faiss.index_factory(d, f'{aq}3x4{postfix1}', metric)
index.train(ds.get_train())
index.add(ds.get_database())
Dref, Iref = index.search(ds.get_queries(), 1)
indexfs = faiss.index_factory(d, f'{aq}3x4fs_32{postfix2}', metric)
indexfs.train(ds.get_train())
indexfs.add(ds.get_database())
indexfs.implem = implem
Da, Ia = indexfs.search(ds.get_queries(), 1)
nq = Iref.shape[0]
recall_ref = (Iref == gt).sum() / nq
recall = (Ia == gt).sum() / nq
print(aq, st, implem, metric_type, recall_ref, recall)
assert abs(recall_ref - recall) < 0.05
def xx_test_accuracy(self):
for metric in 'L2', 'IP':
for implem in 0, 12, 13, 14, 15:
self.subtest_accuracy('RQ', 'rq', implem, metric)
self.subtest_accuracy('LSQ', 'lsq', implem, metric)
def subtest_from_idxaq(self, implem, metric):
if metric == 'L2':
metric_type = faiss.METRIC_L2
st = '_Nrq2x4'
else:
metric_type = faiss.METRIC_INNER_PRODUCT
st = ''
d = 16
ds = datasets.SyntheticDataset(d, 1000, 2000, 1000, metric=metric)
gt = ds.get_groundtruth(k=1)
index = faiss.index_factory(d, 'RQ8x4' + st, metric_type)
index.train(ds.get_train())
index.add(ds.get_database())
index.nprobe = 16
Dref, Iref = index.search(ds.get_queries(), 1)
indexfs = faiss.IndexAdditiveQuantizerFastScan(index)
indexfs.implem = implem
D1, I1 = indexfs.search(ds.get_queries(), 1)
nq = Iref.shape[0]
recall_ref = (Iref == gt).sum() / nq
recall1 = (I1 == gt).sum() / nq
print(recall_ref, recall1)
assert abs(recall_ref - recall1) < 0.05
def test_from_idxaq(self):
for implem in 2, 3, 4:
self.subtest_from_idxaq(implem, 'L2')
self.subtest_from_idxaq(implem, 'IP')
def subtest_factory(self, aq, M, bbs, st):
"""
Format: {AQ}{M}x4fs_{bbs}_N{st}
AQ (str): `LSQ` or `RQ`
M (int): number of subquantizers
bbs (int): build block size
st (str): search type, `lsq2x4` or `rq2x4`
"""
AQ = faiss.AdditiveQuantizer
d = 16
if bbs > 0:
index = faiss.index_factory(d, f'{aq}{M}x4fs_{bbs}_N{st}2x4')
else:
index = faiss.index_factory(d, f'{aq}{M}x4fs_N{st}2x4')
bbs = 32
assert index.bbs == bbs
aq = faiss.downcast_AdditiveQuantizer(index.aq)
assert aq.M == M
if aq == 'LSQ':
assert isinstance(aq, faiss.LocalSearchQuantizer)
if aq == 'RQ':
assert isinstance(aq, faiss.ResidualQuantizer)
if st == 'lsq':
assert aq.search_type == AQ.ST_norm_lsq2x4
if st == 'rq':
assert aq.search_type == AQ.ST_norm_rq2x4
def test_factory(self):
self.subtest_factory('LSQ', 16, 64, 'lsq')
self.subtest_factory('LSQ', 16, 64, 'rq')
self.subtest_factory('RQ', 16, 64, 'rq')
self.subtest_factory('RQ', 16, 64, 'lsq')
self.subtest_factory('LSQ', 64, 0, 'lsq')
def subtest_io(self, factory_str):
d = 8
ds = datasets.SyntheticDataset(d, 1000, 2000, 1000)
index = faiss.index_factory(d, factory_str)
index.train(ds.get_train())
index.add(ds.get_database())
D1, I1 = index.search(ds.get_queries(), 1)
fd, fname = tempfile.mkstemp()
os.close(fd)
try:
faiss.write_index(index, fname)
index2 = faiss.read_index(fname)
D2, I2 = index2.search(ds.get_queries(), 1)
np.testing.assert_array_equal(I1, I2)
finally:
if os.path.exists(fname):
os.unlink(fname)
def test_io(self):
self.subtest_io('LSQ4x4fs_Nlsq2x4')
self.subtest_io('LSQ4x4fs_Nrq2x4')
self.subtest_io('RQ4x4fs_Nrq2x4')
self.subtest_io('RQ4x4fs_Nlsq2x4')
for metric in 'L2', 'IP':
for implem in 0, 12, 13, 14, 15:
setattr(
TestAQFastScan,
f"test_accuracy_{metric}_LSQ_implem{implem}",
lambda self: self.subtest_accuracy('LSQ', 'lsq', implem, metric)
)
setattr(
TestAQFastScan,
f"test_accuracy_{metric}_RQ_implem{implem}",
lambda self: self.subtest_accuracy('RQ', 'rq', implem, metric)
)