Search and return codes (#3143)

Summary:
This PR adds a functionality where an IVF index can be searched and the corresponding codes be returned. It also adds a few functions to compress int arrays into a bit-compact representation.

Pull Request resolved: https://github.com/facebookresearch/faiss/pull/3143

Test Plan:
```
buck test //faiss/tests/:test_index_composite -- TestSearchAndReconstruct

buck test //faiss/tests/:test_standalone_codec -- test_arrays
```

Reviewed By: algoriddle

Differential Revision: D51544613

Pulled By: mdouze

fbshipit-source-id: 875f72d0f9140096851592422570efa0f65431fc
pull/3145/head
Matthijs Douze 2023-11-25 13:57:25 -08:00 committed by Facebook GitHub Bot
parent 467f70edbf
commit b109d086a2
15 changed files with 941 additions and 289 deletions

View File

@ -7,6 +7,7 @@ import argparse
import os
import sys
import time
import json
import faiss
import numpy as np
@ -19,105 +20,6 @@ except ModuleNotFoundError:
sanitize = datasets.sanitize
######################################################
# Command-line parsing
######################################################
parser = argparse.ArgumentParser()
def aa(*args, **kwargs):
group.add_argument(*args, **kwargs)
group = parser.add_argument_group('dataset options')
aa('--db', default='deep1M', help='dataset')
aa('--compute_gt', default=False, action='store_true',
help='compute and store the groundtruth')
aa('--force_IP', default=False, action="store_true",
help='force IP search instead of L2')
group = parser.add_argument_group('index consturction')
aa('--indexkey', default='HNSW32', help='index_factory type')
aa('--maxtrain', default=256 * 256, type=int,
help='maximum number of training points (0 to set automatically)')
aa('--indexfile', default='', help='file to read or write index from')
aa('--add_bs', default=-1, type=int,
help='add elements index by batches of this size')
group = parser.add_argument_group('IVF options')
aa('--by_residual', default=-1, type=int,
help="set if index should use residuals (default=unchanged)")
aa('--no_precomputed_tables', action='store_true', default=False,
help='disable precomputed tables (uses less memory)')
aa('--get_centroids_from', default='',
help='get the centroids from this index (to speed up training)')
aa('--clustering_niter', default=-1, type=int,
help='number of clustering iterations (-1 = leave default)')
aa('--train_on_gpu', default=False, action='store_true',
help='do training on GPU')
group = parser.add_argument_group('index-specific options')
aa('--M0', default=-1, type=int, help='size of base level for HNSW')
aa('--RQ_train_default', default=False, action="store_true",
help='disable progressive dim training for RQ')
aa('--RQ_beam_size', default=-1, type=int,
help='set beam size at add time')
aa('--LSQ_encode_ils_iters', default=-1, type=int,
help='ILS iterations for LSQ')
aa('--RQ_use_beam_LUT', default=-1, type=int,
help='use beam LUT at add time')
group = parser.add_argument_group('searching')
aa('--k', default=100, type=int, help='nb of nearest neighbors')
aa('--inter', default=False, action='store_true',
help='use intersection measure instead of 1-recall as metric')
aa('--searchthreads', default=-1, type=int,
help='nb of threads to use at search time')
aa('--searchparams', nargs='+', default=['autotune'],
help="search parameters to use (can be autotune or a list of params)")
aa('--n_autotune', default=500, type=int,
help="max nb of autotune experiments")
aa('--autotune_max', default=[], nargs='*',
help='set max value for autotune variables format "var:val" (exclusive)')
aa('--autotune_range', default=[], nargs='*',
help='set complete autotune range, format "var:val1,val2,..."')
aa('--min_test_duration', default=3.0, type=float,
help='run test at least for so long to avoid jitter')
args = parser.parse_args()
print("args:", args)
os.system('echo -n "nb processors "; '
'cat /proc/cpuinfo | grep ^processor | wc -l; '
'cat /proc/cpuinfo | grep ^"model name" | tail -1')
######################################################
# Load dataset
######################################################
ds = datasets.load_dataset(
dataset=args.db, compute_gt=args.compute_gt)
if args.force_IP:
ds.metric = "IP"
print(ds)
nq, d = ds.nq, ds.d
nb, d = ds.nq, ds.d
######################################################
# Make index
######################################################
def unwind_index_ivf(index):
if isinstance(index, faiss.IndexPreTransform):
@ -125,6 +27,10 @@ def unwind_index_ivf(index):
vt = index.chain.at(0)
index_ivf, vt2 = unwind_index_ivf(faiss.downcast_index(index.index))
assert vt2 is None
if vt is None:
vt = lambda x: x
else:
vt = faiss.downcast_VectorTransform(vt)
return index_ivf, vt
if hasattr(faiss, "IndexRefine") and isinstance(index, faiss.IndexRefine):
return unwind_index_ivf(faiss.downcast_index(index.base_index))
@ -157,16 +63,50 @@ def apply_AQ_options(index, args):
index.rq.use_beam_LUT = args.RQ_use_beam_LUT
if args.indexfile and os.path.exists(args.indexfile):
print("reading", args.indexfile)
index = faiss.read_index(args.indexfile)
def eval_setting(index, xq, gt, k, inter, min_time):
""" evaluate searching in terms of precision vs. speed """
nq = xq.shape[0]
ivf_stats = faiss.cvar.indexIVF_stats
ivf_stats.reset()
nrun = 0
t0 = time.time()
while True:
D, I = index.search(xq, k)
nrun += 1
t1 = time.time()
if t1 - t0 > min_time:
break
ms_per_query = ((t1 - t0) * 1000.0 / nq / nrun)
res = {
"ms_per_query": ms_per_query,
"nrun": nrun
}
res["n"] = ms_per_query
if inter:
rank = k
inter_measure = faiss.eval_intersection(gt[:, :rank], I[:, :rank]) / (nq * rank)
print("%.4f" % inter_measure, end=' ')
res["inter_measure"] = inter_measure
else:
res["recalls"] = {}
for rank in 1, 10, 100:
recall = (I[:, :rank] == gt[:, :1]).sum() / float(nq)
print("%.4f" % recall, end=' ')
res["recalls"][rank] = recall
print(" %9.5f " % ms_per_query, end=' ')
print("%12d " % (ivf_stats.ndis / nrun), end=' ')
print(nrun)
res["ndis"] = ivf_stats.ndis / nrun
return res
index_ivf, vec_transform = unwind_index_ivf(index)
if vec_transform is None:
vec_transform = lambda x: x
######################################################
# Training
######################################################
else:
def run_train(args, ds, res):
nq, d = ds.nq, ds.d
nb, d = ds.nq, ds.d
print("build index, key=", args.indexkey)
@ -176,10 +116,6 @@ else:
)
index_ivf, vec_transform = unwind_index_ivf(index)
if vec_transform is None:
vec_transform = lambda x: x
else:
vec_transform = faiss.downcast_VectorTransform(vec_transform)
if args.by_residual != -1:
by_residual = args.by_residual == 1
@ -205,9 +141,14 @@ else:
64)
print(base_index.nprobe)
elif isinstance(quantizer, faiss.IndexHNSW):
print(" update quantizer efSearch=", quantizer.hnsw.efSearch, end=" -> ")
quantizer.hnsw.efSearch = 40 if index_ivf.nlist < 4e6 else 64
print(quantizer.hnsw.efSearch)
hnsw = quantizer.hnsw
print(
f" update HNSW quantizer options, before: "
f"{hnsw.efSearch=:} {hnsw.efConstruction=:}"
)
hnsw.efSearch = 40 if index_ivf.nlist < 4e6 else 64
hnsw.efConstruction = 200
print(f" after: {hnsw.efSearch=:} {hnsw.efConstruction=:}")
apply_AQ_options(index_ivf or index, args)
@ -286,182 +227,341 @@ else:
t0 = time.time()
index.train(xt2)
print(" train in %.3f s" % (time.time() - t0))
res.train_time = time.time() - t0
print(" train in %.3f s" % res.train_time)
return index
######################################################
# Populating index
######################################################
def run_add(args, ds, index, res):
print("adding")
t0 = time.time()
if args.add_bs == -1:
assert args.split == [1, 0], "split not supported with full batch add"
index.add(sanitize(ds.get_database()))
else:
totn = ds.nb // args.split[0] # approximate
i0 = 0
for xblock in ds.database_iterator(bs=args.add_bs):
print(f"Adding in block sizes {args.add_bs} with split {args.split}")
for xblock in ds.database_iterator(bs=args.add_bs, split=args.split):
i1 = i0 + len(xblock)
print(" adding %d:%d / %d [%.3f s, RSS %d kiB] " % (
i0, i1, ds.nb, time.time() - t0,
i0, i1, totn, time.time() - t0,
faiss.get_mem_usage_kb()))
index.add(xblock)
i0 = i1
print(" add in %.3f s" % (time.time() - t0))
res.t_add = time.time() - t0
print(f" add in {res.t_add:.3f} s index size {index.ntotal}")
######################################################
# Search
######################################################
def run_search(args, ds, index, res):
index_ivf, vec_transform = unwind_index_ivf(index)
if args.no_precomputed_tables:
if isinstance(index_ivf, faiss.IndexIVFPQ):
print("disabling precomputed table")
index_ivf.use_precomputed_table = -1
index_ivf.precomputed_table.clear()
if args.indexfile:
print("storing", args.indexfile)
faiss.write_index(index, args.indexfile)
print("index size on disk: ", os.stat(args.indexfile).st_size)
if args.no_precomputed_tables:
if isinstance(index_ivf, faiss.IndexIVFPQ):
print("disabling precomputed table")
index_ivf.use_precomputed_table = -1
index_ivf.precomputed_table.clear()
if hasattr(index, "code_size"):
print("vector code_size", index.code_size)
if args.indexfile:
print("index size on disk: ", os.stat(args.indexfile).st_size)
if hasattr(index_ivf, "code_size"):
print("vector code_size (IVF)", index_ivf.code_size)
if hasattr(index, "code_size"):
print("vector code_size", index.code_size)
print("current RSS:", faiss.get_mem_usage_kb() * 1024)
if hasattr(index_ivf, "code_size"):
print("vector code_size (IVF)", index_ivf.code_size)
precomputed_table_size = 0
if hasattr(index_ivf, 'precomputed_table'):
precomputed_table_size = index_ivf.precomputed_table.size() * 4
print("current RSS:", faiss.get_mem_usage_kb() * 1024)
print("precomputed tables size:", precomputed_table_size)
precomputed_table_size = 0
if hasattr(index_ivf, 'precomputed_table'):
precomputed_table_size = index_ivf.precomputed_table.size() * 4
# Index is ready
print("precomputed tables size:", precomputed_table_size)
xq = sanitize(ds.get_queries())
nq, d = xq.shape
gt = ds.get_groundtruth(k=args.k)
if not args.accept_short_gt: # Deep1B has only a single NN per query
assert gt.shape[1] == args.k
#############################################################
# Index is ready
#############################################################
xq = sanitize(ds.get_queries())
gt = ds.get_groundtruth(k=args.k)
assert gt.shape[1] == args.k
if args.searchthreads != -1:
print("Setting nb of threads to", args.searchthreads)
faiss.omp_set_num_threads(args.searchthreads)
else:
print("nb search threads: ", faiss.omp_get_max_threads())
ps = faiss.ParameterSpace()
ps.initialize(index)
parametersets = args.searchparams
if args.inter:
header = (
'%-40s inter@%3d time(ms/q) nb distances #runs' %
("parameters", args.k)
)
else:
header = (
'%-40s R@1 R@10 R@100 time(ms/q) nb distances #runs' %
"parameters"
)
def compute_inter(a, b):
nq, rank = a.shape
ninter = sum(
np.intersect1d(a[i, :rank], b[i, :rank]).size
for i in range(nq)
)
return ninter / a.size
def eval_setting(index, xq, gt, k, inter, min_time):
nq = xq.shape[0]
ivf_stats = faiss.cvar.indexIVF_stats
ivf_stats.reset()
nrun = 0
t0 = time.time()
while True:
D, I = index.search(xq, k)
nrun += 1
t1 = time.time()
if t1 - t0 > min_time:
break
ms_per_query = ((t1 - t0) * 1000.0 / nq / nrun)
if inter:
rank = k
inter_measure = compute_inter(gt[:, :rank], I[:, :rank])
print("%.4f" % inter_measure, end=' ')
if args.searchthreads != -1:
print("Setting nb of threads to", args.searchthreads)
faiss.omp_set_num_threads(args.searchthreads)
else:
for rank in 1, 10, 100:
n_ok = (I[:, :rank] == gt[:, :1]).sum()
print("%.4f" % (n_ok / float(nq)), end=' ')
print(" %9.5f " % ms_per_query, end=' ')
print("%12d " % (ivf_stats.ndis / nrun), end=' ')
print(nrun)
print("nb search threads: ", faiss.omp_get_max_threads())
ps = faiss.ParameterSpace()
ps.initialize(index)
if parametersets == ['autotune']:
parametersets = args.searchparams
ps.n_experiments = args.n_autotune
ps.min_test_duration = args.min_test_duration
for kv in args.autotune_max:
k, vmax = kv.split(':')
vmax = float(vmax)
print("limiting %s to %g" % (k, vmax))
pr = ps.add_range(k)
values = faiss.vector_to_array(pr.values)
values = np.array([v for v in values if v < vmax])
faiss.copy_array_to_vector(values, pr.values)
for kv in args.autotune_range:
k, vals = kv.split(':')
vals = np.fromstring(vals, sep=',')
print("setting %s to %s" % (k, vals))
pr = ps.add_range(k)
faiss.copy_array_to_vector(vals, pr.values)
# setup the Criterion object
if args.inter:
print("Optimize for intersection @ ", args.k)
crit = faiss.IntersectionCriterion(nq, args.k)
header = (
'%-40s inter@%3d time(ms/q) nb distances #runs' %
("parameters", args.k)
)
else:
print("Optimize for 1-recall @ 1")
crit = faiss.OneRecallAtRCriterion(nq, 1)
# by default, the criterion will request only 1 NN
crit.nnn = args.k
crit.set_groundtruth(None, gt.astype('int64'))
header = (
'%-40s R@1 R@10 R@100 time(ms/q) nb distances #runs' %
"parameters"
)
# then we let Faiss find the optimal parameters by itself
print("exploring operating points, %d threads" % faiss.omp_get_max_threads());
ps.display()
t0 = time.time()
op = ps.explore(index, xq, crit)
print("Done in %.3f s, available OPs:" % (time.time() - t0))
res.search_results = {}
if parametersets == ['autotune']:
op.display()
ps.n_experiments = args.n_autotune
ps.min_test_duration = args.min_test_duration
print("Re-running evaluation on selected OPs")
print(header)
opv = op.optimal_pts
maxw = max(max(len(opv.at(i).key) for i in range(opv.size())), 40)
for i in range(opv.size()):
opt = opv.at(i)
for kv in args.autotune_max:
k, vmax = kv.split(':')
vmax = float(vmax)
print("limiting %s to %g" % (k, vmax))
pr = ps.add_range(k)
values = faiss.vector_to_array(pr.values)
values = np.array([v for v in values if v < vmax])
faiss.copy_array_to_vector(values, pr.values)
ps.set_index_parameters(index, opt.key)
for kv in args.autotune_range:
k, vals = kv.split(':')
vals = np.fromstring(vals, sep=',')
print("setting %s to %s" % (k, vals))
pr = ps.add_range(k)
faiss.copy_array_to_vector(vals, pr.values)
print(opt.key.ljust(maxw), end=' ')
sys.stdout.flush()
# setup the Criterion object
if args.inter:
print("Optimize for intersection @ ", args.k)
crit = faiss.IntersectionCriterion(nq, args.k)
else:
print("Optimize for 1-recall @ 1")
crit = faiss.OneRecallAtRCriterion(nq, 1)
eval_setting(index, xq, gt, args.k, args.inter, args.min_test_duration)
# by default, the criterion will request only 1 NN
crit.nnn = args.k
crit.set_groundtruth(None, gt.astype('int64'))
else:
print(header)
for param in parametersets:
print("%-40s " % param, end=' ')
sys.stdout.flush()
ps.set_index_parameters(index, param)
# then we let Faiss find the optimal parameters by itself
print("exploring operating points, %d threads" % faiss.omp_get_max_threads());
ps.display()
eval_setting(index, xq, gt, args.k, args.inter, args.min_test_duration)
t0 = time.time()
op = ps.explore(index, xq, crit)
res.t_explore = time.time() - t0
print("Done in %.3f s, available OPs:" % res.t_explore)
op.display()
print("Re-running evaluation on selected OPs")
print(header)
opv = op.optimal_pts
maxw = max(max(len(opv.at(i).key) for i in range(opv.size())), 40)
for i in range(opv.size()):
opt = opv.at(i)
ps.set_index_parameters(index, opt.key)
print(opt.key.ljust(maxw), end=' ')
sys.stdout.flush()
res_i = eval_setting(index, xq, gt, args.k, args.inter, args.min_test_duration)
res.search_results[opt.key] = res_i
else:
print(header)
for param in parametersets:
print("%-40s " % param, end=' ')
sys.stdout.flush()
ps.set_index_parameters(index, param)
res_i = eval_setting(index, xq, gt, args.k, args.inter, args.min_test_duration)
res.search_results[param] = res_i
######################################################
# Driver function
######################################################
def main():
parser = argparse.ArgumentParser()
def aa(*args, **kwargs):
group.add_argument(*args, **kwargs)
group = parser.add_argument_group('general options')
aa('--nthreads', default=-1, type=int,
help='nb of threads to use at train and add time')
aa('--json', default=False, action="store_true",
help="output stats in JSON format at the end")
aa('--todo', default=["check_files"],
choices=["train", "add", "search", "check_files"],
nargs="+", help='what to do (check_files means decide depending on which index files exist)')
group = parser.add_argument_group('dataset options')
aa('--db', default='deep1M', help='dataset')
aa('--compute_gt', default=False, action='store_true',
help='compute and store the groundtruth')
aa('--force_IP', default=False, action="store_true",
help='force IP search instead of L2')
aa('--accept_short_gt', default=False, action='store_true',
help='work around a problem with Deep1B GT')
group = parser.add_argument_group('index construction')
aa('--indexkey', default='HNSW32', help='index_factory type')
aa('--trained_indexfile', default='',
help='file to read or write a trained index from')
aa('--maxtrain', default=256 * 256, type=int,
help='maximum number of training points (0 to set automatically)')
aa('--indexfile', default='', help='file to read or write index from')
aa('--split', default=[1, 0], type=int, nargs=2, help="database split")
aa('--add_bs', default=-1, type=int,
help='add elements index by batches of this size')
group = parser.add_argument_group('IVF options')
aa('--by_residual', default=-1, type=int,
help="set if index should use residuals (default=unchanged)")
aa('--no_precomputed_tables', action='store_true', default=False,
help='disable precomputed tables (uses less memory)')
aa('--get_centroids_from', default='',
help='get the centroids from this index (to speed up training)')
aa('--clustering_niter', default=-1, type=int,
help='number of clustering iterations (-1 = leave default)')
aa('--train_on_gpu', default=False, action='store_true',
help='do training on GPU')
group = parser.add_argument_group('index-specific options')
aa('--M0', default=-1, type=int, help='size of base level for HNSW')
aa('--RQ_train_default', default=False, action="store_true",
help='disable progressive dim training for RQ')
aa('--RQ_beam_size', default=-1, type=int,
help='set beam size at add time')
aa('--LSQ_encode_ils_iters', default=-1, type=int,
help='ILS iterations for LSQ')
aa('--RQ_use_beam_LUT', default=-1, type=int,
help='use beam LUT at add time')
group = parser.add_argument_group('searching')
aa('--k', default=100, type=int, help='nb of nearest neighbors')
aa('--inter', default=False, action='store_true',
help='use intersection measure instead of 1-recall as metric')
aa('--searchthreads', default=-1, type=int,
help='nb of threads to use at search time')
aa('--searchparams', nargs='+', default=['autotune'],
help="search parameters to use (can be autotune or a list of params)")
aa('--n_autotune', default=500, type=int,
help="max nb of autotune experiments")
aa('--autotune_max', default=[], nargs='*',
help='set max value for autotune variables format "var:val" (exclusive)')
aa('--autotune_range', default=[], nargs='*',
help='set complete autotune range, format "var:val1,val2,..."')
aa('--min_test_duration', default=3.0, type=float,
help='run test at least for so long to avoid jitter')
aa('--indexes_to_merge', default=[], nargs="*",
help="load these indexes to search and merge them before searching")
args = parser.parse_args()
if args.todo == ["check_files"]:
if os.path.exists(args.indexfile):
args.todo = ["search"]
elif os.path.exists(args.trained_indexfile):
args.todo = ["add", "search"]
else:
args.todo = ["train", "add", "search"]
print("setting todo to", args.todo)
print("args:", args)
os.system('echo -n "nb processors "; '
'cat /proc/cpuinfo | grep ^processor | wc -l; '
'cat /proc/cpuinfo | grep ^"model name" | tail -1')
# object to collect results
res = argparse.Namespace()
res.args = args.__dict__
res.cpu_model = [
l for l in open("/proc/cpuinfo", "r")
if "model name" in l][0]
print("Load dataset")
ds = datasets.load_dataset(
dataset=args.db, compute_gt=args.compute_gt)
if args.force_IP:
ds.metric = "IP"
print(ds)
if args.nthreads != -1:
print("Set nb of threads to", args.nthreads)
faiss.omp_set_num_threads(args.nthreads)
else:
print("nb threads: ", faiss.omp_get_max_threads())
index = None
if "train" in args.todo:
print("================== Training index")
index = run_train(args, ds, res)
if args.trained_indexfile:
print("storing trained index", args.trained_indexfile)
faiss.write_index(index, args.trained_indexfile)
if "add" in args.todo:
if not index:
assert args.trained_indexfile
print("reading trained index", args.trained_indexfile)
index = faiss.read_index(args.trained_indexfile)
print("================== Adding vectors to index")
run_add(args, ds, index, res)
if args.indexfile:
print("storing", args.indexfile)
faiss.write_index(index, args.indexfile)
if "search" in args.todo:
if not index:
if args.indexfile:
print("reading index", args.indexfile)
index = faiss.read_index(args.indexfile)
elif args.indexes_to_merge:
print(f"Merging {len(args.indexes_to_merge)} indexes")
sz = 0
for fname in args.indexes_to_merge:
print(f" reading {fname} (current size {sz})")
index_i = faiss.read_index(fname)
if index is None:
index = index_i
else:
index.merge_from(index_i, index.ntotal)
sz = index.ntotal
else:
assert False, "provide --indexfile"
print("================== Searching")
run_search(args, ds, index, res)
if args.json:
print("JSON results:", json.dumps(res.__dict__))
if __name__ == "__main__":
main()

View File

@ -530,14 +530,7 @@ def main():
raise RuntimeError()
totex = op.num_experiments()
rs = np.random.RandomState(123)
if totex < args.n_autotune:
experiments = rs.permutation(totex - 2) + 1
else:
experiments = rs.randint(
totex - 2, size=args.n_autotune - 2, replace=False)
experiments = [0, totex - 1] + list(experiments)
experiments = op.sample_experiments()
print(f"total nb experiments {totex}, running {len(experiments)}")
print("perform search")

View File

@ -380,7 +380,23 @@ class OperatingPointsWithRanges(OperatingPoints):
return np.zeros(len(self.ranges), dtype=int)
def num_experiments(self):
return np.prod([len(values) for name, values in self.ranges])
return int(np.prod([len(values) for name, values in self.ranges]))
def sample_experiments(self, n_autotune, rs=np.random):
""" sample a set of experiments of max size n_autotune
(run all experiments in random order if n_autotune is 0)
"""
assert n_autotune == 0 or n_autotune >= 2
totex = self.num_experiments()
rs = np.random.RandomState(123)
if n_autotune == 0 or totex < n_autotune:
experiments = rs.permutation(totex - 2)
else:
experiments = rs.choice(
totex - 2, size=n_autotune - 2, replace=False)
experiments = [0, totex - 1] + [int(cno) + 1 for cno in experiments]
return experiments
def cno_to_key(self, cno):
"""Convert a sequential experiment number to a key"""

View File

@ -977,14 +977,12 @@ void IndexIVF::search_and_reconstruct(
std::min(nlist, params ? params->nprobe : this->nprobe);
FAISS_THROW_IF_NOT(nprobe > 0);
idx_t* idx = new idx_t[n * nprobe];
ScopeDeleter<idx_t> del(idx);
float* coarse_dis = new float[n * nprobe];
ScopeDeleter<float> del2(coarse_dis);
std::unique_ptr<idx_t[]> idx(new idx_t[n * nprobe]);
std::unique_ptr<float[]> coarse_dis(new float[n * nprobe]);
quantizer->search(n, x, nprobe, coarse_dis, idx);
quantizer->search(n, x, nprobe, coarse_dis.get(), idx.get());
invlists->prefetch_lists(idx, n * nprobe);
invlists->prefetch_lists(idx.get(), n * nprobe);
// search_preassigned() with `store_pairs` enabled to obtain the list_no
// and offset into `codes` for reconstruction
@ -992,29 +990,94 @@ void IndexIVF::search_and_reconstruct(
n,
x,
k,
idx,
coarse_dis,
idx.get(),
coarse_dis.get(),
distances,
labels,
true /* store_pairs */,
params);
for (idx_t i = 0; i < n; ++i) {
for (idx_t j = 0; j < k; ++j) {
idx_t ij = i * k + j;
idx_t key = labels[ij];
float* reconstructed = recons + ij * d;
if (key < 0) {
// Fill with NaNs
memset(reconstructed, -1, sizeof(*reconstructed) * d);
} else {
int list_no = lo_listno(key);
int offset = lo_offset(key);
#pragma omp parallel for if (n * k > 1000)
for (idx_t ij = 0; ij < n * k; ij++) {
idx_t key = labels[ij];
float* reconstructed = recons + ij * d;
if (key < 0) {
// Fill with NaNs
memset(reconstructed, -1, sizeof(*reconstructed) * d);
} else {
int list_no = lo_listno(key);
int offset = lo_offset(key);
// Update label to the actual id
labels[ij] = invlists->get_single_id(list_no, offset);
// Update label to the actual id
labels[ij] = invlists->get_single_id(list_no, offset);
reconstruct_from_offset(list_no, offset, reconstructed);
reconstruct_from_offset(list_no, offset, reconstructed);
}
}
}
void IndexIVF::search_and_return_codes(
idx_t n,
const float* x,
idx_t k,
float* distances,
idx_t* labels,
uint8_t* codes,
bool include_listno,
const SearchParameters* params_in) const {
const IVFSearchParameters* params = nullptr;
if (params_in) {
params = dynamic_cast<const IVFSearchParameters*>(params_in);
FAISS_THROW_IF_NOT_MSG(params, "IndexIVF params have incorrect type");
}
const size_t nprobe =
std::min(nlist, params ? params->nprobe : this->nprobe);
FAISS_THROW_IF_NOT(nprobe > 0);
std::unique_ptr<idx_t[]> idx(new idx_t[n * nprobe]);
std::unique_ptr<float[]> coarse_dis(new float[n * nprobe]);
quantizer->search(n, x, nprobe, coarse_dis.get(), idx.get());
invlists->prefetch_lists(idx.get(), n * nprobe);
// search_preassigned() with `store_pairs` enabled to obtain the list_no
// and offset into `codes` for reconstruction
search_preassigned(
n,
x,
k,
idx.get(),
coarse_dis.get(),
distances,
labels,
true /* store_pairs */,
params);
size_t code_size_1 = code_size;
if (include_listno) {
code_size_1 += coarse_code_size();
}
#pragma omp parallel for if (n * k > 1000)
for (idx_t ij = 0; ij < n * k; ij++) {
idx_t key = labels[ij];
uint8_t* code1 = codes + ij * code_size_1;
if (key < 0) {
// Fill with 0xff
memset(code1, -1, code_size_1);
} else {
int list_no = lo_listno(key);
int offset = lo_offset(key);
const uint8_t* cc = invlists->get_single_code(list_no, offset);
labels[ij] = invlists->get_single_id(list_no, offset);
if (include_listno) {
encode_listno(list_no, code1);
code1 += code_size_1 - code_size;
}
memcpy(code1, cc, code_size);
}
}
}

View File

@ -357,6 +357,24 @@ struct IndexIVF : Index, IndexIVFInterface {
float* recons,
const SearchParameters* params = nullptr) const override;
/** Similar to search, but also returns the codes corresponding to the
* stored vectors for the search results.
*
* @param codes codes (n, k, code_size)
* @param include_listno
* include the list ids in the code (in this case add
* ceil(log8(nlist)) to the code size)
*/
void search_and_return_codes(
idx_t n,
const float* x,
idx_t k,
float* distances,
idx_t* labels,
uint8_t* recons,
bool include_listno = false,
const SearchParameters* params = nullptr) const;
/** Reconstruct a vector given the location in terms of (inv list index +
* inv list offset) instead of the id.
*

View File

@ -149,6 +149,7 @@ struct AQInvertedListScanner : InvertedListScanner {
const float* q;
/// following codes come from this inverted list
void set_list(idx_t list_no, float coarse_dis) override {
this->list_no = list_no;
if (ia.metric_type == METRIC_L2 && ia.by_residual) {
ia.quantizer->compute_residual(q0, tmp.data(), list_no);
q = tmp.data();

View File

@ -261,7 +261,7 @@ void AdditiveQuantizer::decode(const uint8_t* code, float* x, size_t n) const {
is_trained, "The additive quantizer is not trained yet.");
// standard additive quantizer decoding
#pragma omp parallel for if (n > 1000)
#pragma omp parallel for if (n > 100)
for (int64_t i = 0; i < n; i++) {
BitstringReader bsr(code + i * code_size, code_size);
float* xi = x + i * d;

View File

@ -306,7 +306,8 @@ void ProductQuantizer::decode(const uint8_t* code, float* x) const {
}
void ProductQuantizer::decode(const uint8_t* code, float* x, size_t n) const {
for (size_t i = 0; i < n; i++) {
#pragma omp parallel for if (n > 100)
for (int64_t i = 0; i < n; i++) {
this->decode(code + code_size * i, x + d * i);
}
}

View File

@ -22,7 +22,8 @@ from faiss.array_conversions import *
from faiss.extra_wrappers import kmin, kmax, pairwise_distances, rand, randint, \
lrand, randn, rand_smooth_vectors, eval_intersection, normalize_L2, \
ResultHeap, knn, Kmeans, checksum, matrix_bucket_sort_inplace, bucket_sort, \
merge_knn_results, MapInt64ToInt64, knn_hamming
merge_knn_results, MapInt64ToInt64, knn_hamming, \
pack_bitstrings, unpack_bitstrings
__version__ = "%d.%d.%d" % (FAISS_VERSION_MAJOR,

View File

@ -402,6 +402,74 @@ def handle_Index(the_class):
)
return D, I, R
def replacement_search_and_return_codes(
self, x, k, *,
include_listnos=False, params=None, D=None, I=None, codes=None):
"""Find the k nearest neighbors of the set of vectors x in the index,
and return the codes stored for these vectors
Parameters
----------
x : array_like
Query vectors, shape (n, d) where d is appropriate for the index.
`dtype` must be float32.
k : int
Number of nearest neighbors.
params : SearchParameters
Search parameters of the current search (overrides the class-level params)
include_listnos : bool, optional
whether to include the list ids in the first bytes of each code
D : array_like, optional
Distance array to store the result.
I : array_like, optional
Labels array to store the result.
codes : array_like, optional
codes array to store
Returns
-------
D : array_like
Distances of the nearest neighbors, shape (n, k). When not enough results are found
the label is set to +Inf or -Inf.
I : array_like
Labels of the nearest neighbors, shape (n, k). When not enough results are found,
the label is set to -1
R : array_like
Approximate (reconstructed) nearest neighbor vectors, shape (n, k, d).
"""
n, d = x.shape
assert d == self.d
x = np.ascontiguousarray(x, dtype='float32')
assert k > 0
if D is None:
D = np.empty((n, k), dtype=np.float32)
else:
assert D.shape == (n, k)
if I is None:
I = np.empty((n, k), dtype=np.int64)
else:
assert I.shape == (n, k)
code_size_1 = self.code_size
if include_listnos:
code_size_1 += self.coarse_code_size()
if codes is None:
codes = np.empty((n, k, code_size_1), dtype=np.uint8)
else:
assert codes.shape == (n, k, code_size_1)
self.search_and_return_codes_c(
n, swig_ptr(x),
k, swig_ptr(D),
swig_ptr(I), swig_ptr(codes), include_listnos,
params
)
return D, I, codes
def replacement_remove_ids(self, x):
"""Remove some ids from the index.
This is a O(ntotal) operation by default, so could be expensive.
@ -734,6 +802,8 @@ def handle_Index(the_class):
ignore_missing=True)
replace_method(the_class, 'search_and_reconstruct',
replacement_search_and_reconstruct, ignore_missing=True)
replace_method(the_class, 'search_and_return_codes',
replacement_search_and_return_codes, ignore_missing=True)
# these ones are IVF-specific
replace_method(the_class, 'search_preassigned',

View File

@ -14,6 +14,9 @@ from faiss.loader import *
import faiss
import collections.abc
###########################################
# Wrapper for a few functions
###########################################
@ -579,3 +582,72 @@ class Kmeans:
self.index.add(self.centroids)
D, I = self.index.search(x, 1)
return D.ravel(), I.ravel()
###########################################
# Packing and unpacking bistrings
###########################################
def is_sequence(x):
return isinstance(x, collections.abc.Sequence)
pack_bitstrings_c = pack_bitstrings
def pack_bitstrings(a, nbit):
"""
Pack a set integers (i, j) where i=0:n and j=0:M into
n bitstrings.
Output is an uint8 array of size (n, code_size), where code_size is
such that at most 7 bits per code are wasted.
If nbit is an integer: all entries takes nbit bits.
If nbit is an array: entry (i, j) takes nbit[j] bits.
"""
n, M = a.shape
a = np.ascontiguousarray(a, dtype='int32')
if is_sequence(nbit):
nbit = np.ascontiguousarray(nbit, dtype='int32')
assert nbit.shape == (M,)
code_size = int((nbit.sum() + 7) // 8)
b = np.empty((n, code_size), dtype='uint8')
pack_bitstrings_c(
n, M, swig_ptr(nbit), swig_ptr(a), swig_ptr(b), code_size)
else:
code_size = (M * nbit + 7) // 8
b = np.empty((n, code_size), dtype='uint8')
pack_bitstrings_c(n, M, nbit, swig_ptr(a), swig_ptr(b), code_size)
return b
unpack_bitstrings_c = unpack_bitstrings
def unpack_bitstrings(b, M_or_nbits, nbit=None):
"""
Unpack a set integers (i, j) where i=0:n and j=0:M from
n bitstrings (encoded as uint8s).
Input is an uint8 array of size (n, code_size), where code_size is
such that at most 7 bits per code are wasted.
Two forms:
- when called with (array, M, nbit): there are M entries of size
nbit per row
- when called with (array, nbits): element (i, j) is encoded in
nbits[j] bits
"""
n, code_size = b.shape
if nbit is None:
nbit = np.ascontiguousarray(M_or_nbits, dtype='int32')
M = len(nbit)
min_code_size = int((nbit.sum() + 7) // 8)
assert code_size >= min_code_size
a = np.empty((n, M), dtype='int32')
unpack_bitstrings_c(
n, M, swig_ptr(nbit),
swig_ptr(b), code_size, swig_ptr(a))
else:
M = M_or_nbits
min_code_size = (M * nbit + 7) // 8
assert code_size >= min_code_size
a = np.empty((n, M), dtype='int32')
unpack_bitstrings_c(
n, M, nbit, swig_ptr(b), code_size, swig_ptr(a))
return a

View File

@ -681,4 +681,88 @@ void generalized_hammings_knn_hc(
ha->reorder();
}
void pack_bitstrings(
size_t n,
size_t M,
int nbit,
const int32_t* unpacked,
uint8_t* packed,
size_t code_size) {
FAISS_THROW_IF_NOT(code_size >= (M * nbit + 7) / 8);
#pragma omp parallel for if (n > 1000)
for (int64_t i = 0; i < n; i++) {
const int32_t* in = unpacked + i * M;
uint8_t* out = packed + i * code_size;
BitstringWriter wr(out, code_size);
for (int j = 0; j < M; j++) {
wr.write(in[j], nbit);
}
}
}
void pack_bitstrings(
size_t n,
size_t M,
const int32_t* nbit,
const int32_t* unpacked,
uint8_t* packed,
size_t code_size) {
int totbit = 0;
for (int j = 0; j < M; j++) {
totbit += nbit[j];
}
FAISS_THROW_IF_NOT(code_size >= (totbit + 7) / 8);
#pragma omp parallel for if (n > 1000)
for (int64_t i = 0; i < n; i++) {
const int32_t* in = unpacked + i * M;
uint8_t* out = packed + i * code_size;
BitstringWriter wr(out, code_size);
for (int j = 0; j < M; j++) {
wr.write(in[j], nbit[j]);
}
}
}
void unpack_bitstrings(
size_t n,
size_t M,
int nbit,
const uint8_t* packed,
size_t code_size,
int32_t* unpacked) {
FAISS_THROW_IF_NOT(code_size >= (M * nbit + 7) / 8);
#pragma omp parallel for if (n > 1000)
for (int64_t i = 0; i < n; i++) {
const uint8_t* in = packed + i * code_size;
int32_t* out = unpacked + i * M;
BitstringReader rd(in, code_size);
for (int j = 0; j < M; j++) {
out[j] = rd.read(nbit);
}
}
}
void unpack_bitstrings(
size_t n,
size_t M,
const int32_t* nbit,
const uint8_t* packed,
size_t code_size,
int32_t* unpacked) {
int totbit = 0;
for (int j = 0; j < M; j++) {
totbit += nbit[j];
}
FAISS_THROW_IF_NOT(code_size >= (totbit + 7) / 8);
#pragma omp parallel for if (n > 1000)
for (int64_t i = 0; i < n; i++) {
const uint8_t* in = packed + i * code_size;
int32_t* out = unpacked + i * M;
BitstringReader rd(in, code_size);
for (int j = 0; j < M; j++) {
out[j] = rd.read(nbit[j]);
}
}
}
} // namespace faiss

View File

@ -222,6 +222,64 @@ void generalized_hammings_knn_hc(
size_t code_size,
int ordered = true);
/** Pack a set of n codes of size M * nbit
*
* @param n number of codes to pack
* @param M number of elementary codes per code
* @param nbit number of bits per elementary code
* @param unpacked input unpacked codes, size (n, M)
* @param packed output packed codes, size (n, code_size)
* @param code_size should be >= ceil(M * nbit / 8)
*/
void pack_bitstrings(
size_t n,
size_t M,
int nbit,
const int32_t* unpacked,
uint8_t* packed,
size_t code_size);
/** Pack a set of n codes of variable sizes
*
* @param nbit number of bits per entry (size M)
*/
void pack_bitstrings(
size_t n,
size_t M,
const int32_t* nbits,
const int32_t* unpacked,
uint8_t* packed,
size_t code_size);
/** Unpack a set of n codes of size M * nbit
*
* @param n number of codes to pack
* @param M number of elementary codes per code
* @param nbit number of bits per elementary code
* @param unpacked input unpacked codes, size (n, M)
* @param packed output packed codes, size (n, code_size)
* @param code_size should be >= ceil(M * nbit / 8)
*/
void unpack_bitstrings(
size_t n,
size_t M,
int nbit,
const uint8_t* packed,
size_t code_size,
int32_t* unpacked);
/** Unpack a set of n codes of variable sizes
*
* @param nbit number of bits per entry (size M)
*/
void unpack_bitstrings(
size_t n,
size_t M,
const int32_t* nbits,
const uint8_t* packed,
size_t code_size,
int32_t* unpacked);
} // namespace faiss
#include <faiss/utils/hamming-inl.h>

View File

@ -14,7 +14,7 @@ import shutil
import tempfile
import platform
from common_faiss_tests import get_dataset_2
from common_faiss_tests import get_dataset_2, get_dataset
from faiss.contrib.datasets import SyntheticDataset
from faiss.contrib.inspect_tools import make_LinearTransform_matrix
from faiss.contrib.evaluation import check_ref_knn_with_draws
@ -822,3 +822,158 @@ class TestIndependentQuantizer(unittest.TestCase):
np.testing.assert_array_equal(Dnew, D2)
np.testing.assert_array_equal(Inew, I2)
class TestSearchAndReconstruct(unittest.TestCase):
def run_search_and_reconstruct(self, index, xb, xq, k=10, eps=None):
n, d = xb.shape
assert xq.shape[1] == d
assert index.d == d
D_ref, I_ref = index.search(xq, k)
R_ref = index.reconstruct_n(0, n)
D, I, R = index.search_and_reconstruct(xq, k)
np.testing.assert_almost_equal(D, D_ref, decimal=5)
self.assertTrue((I == I_ref).all())
self.assertEqual(R.shape[:2], I.shape)
self.assertEqual(R.shape[2], d)
# (n, k, ..) -> (n * k, ..)
I_flat = I.reshape(-1)
R_flat = R.reshape(-1, d)
# Filter out -1s when not enough results
R_flat = R_flat[I_flat >= 0]
I_flat = I_flat[I_flat >= 0]
recons_ref_err = np.mean(np.linalg.norm(R_flat - R_ref[I_flat]))
self.assertLessEqual(recons_ref_err, 1e-6)
def norm1(x):
return np.sqrt((x ** 2).sum(axis=1))
recons_err = np.mean(norm1(R_flat - xb[I_flat]))
print('Reconstruction error = %.3f' % recons_err)
if eps is not None:
self.assertLessEqual(recons_err, eps)
return D, I, R
def test_IndexFlat(self):
d = 32
nb = 1000
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset(d, nb, nt, nq)
index = faiss.IndexFlatL2(d)
index.add(xb)
self.run_search_and_reconstruct(index, xb, xq, eps=0.0)
def test_IndexIVFFlat(self):
d = 32
nb = 1000
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset(d, nb, nt, nq)
quantizer = faiss.IndexFlatL2(d)
index = faiss.IndexIVFFlat(quantizer, d, 32, faiss.METRIC_L2)
index.cp.min_points_per_centroid = 5 # quiet warning
index.nprobe = 4
index.train(xt)
index.add(xb)
self.run_search_and_reconstruct(index, xb, xq, eps=0.0)
def test_IndexIVFPQ(self):
d = 32
nb = 1000
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset(d, nb, nt, nq)
quantizer = faiss.IndexFlatL2(d)
index = faiss.IndexIVFPQ(quantizer, d, 32, 8, 8)
index.cp.min_points_per_centroid = 5 # quiet warning
index.nprobe = 4
index.train(xt)
index.add(xb)
self.run_search_and_reconstruct(index, xb, xq, eps=1.0)
def test_MultiIndex(self):
d = 32
nb = 1000
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset(d, nb, nt, nq)
index = faiss.index_factory(d, "IMI2x5,PQ8np")
faiss.ParameterSpace().set_index_parameter(index, "nprobe", 4)
index.train(xt)
index.add(xb)
self.run_search_and_reconstruct(index, xb, xq, eps=1.0)
def test_IndexTransform(self):
d = 32
nb = 1000
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset(d, nb, nt, nq)
index = faiss.index_factory(d, "L2norm,PCA8,IVF32,PQ8np")
faiss.ParameterSpace().set_index_parameter(index, "nprobe", 4)
index.train(xt)
index.add(xb)
self.run_search_and_reconstruct(index, xb, xq)
class TestSearchAndGetCodes(unittest.TestCase):
def do_test(self, factory_string):
ds = SyntheticDataset(32, 1000, 100, 10)
index = faiss.index_factory(ds.d, factory_string)
index.train(ds.get_train())
index.add(ds.get_database())
index.nprobe
index.nprobe = 10
Dref, Iref = index.search(ds.get_queries(), 10)
#print(index.search_and_return_codes)
D, I, codes = index.search_and_return_codes(
ds.get_queries(), 10, include_listnos=True)
np.testing.assert_array_equal(I, Iref)
np.testing.assert_array_equal(D, Dref)
# verify that we get the same distances when decompressing from
# returned codes (the codes are compatible with sa_decode)
for qi in range(ds.nq):
q = ds.get_queries()[qi]
xbi = index.sa_decode(codes[qi])
D2 = ((q - xbi) ** 2).sum(1)
np.testing.assert_allclose(D2, D[qi], rtol=1e-5)
def test_ivfpq(self):
self.do_test("IVF20,PQ4x4np")
def test_ivfsq(self):
self.do_test("IVF20,SQ8")
def test_ivfrq(self):
self.do_test("IVF20,RQ3x4")

View File

@ -266,9 +266,9 @@ class LatticeTest(unittest.TestCase):
class TestBitstring(unittest.TestCase):
""" Low-level bit string tests """
def test_rw(self):
""" Low-level bit string tests """
rs = np.random.RandomState(1234)
nbyte = 1000
sz = 0
@ -311,6 +311,26 @@ class TestBitstring(unittest.TestCase):
# print('nbit %d xref %x xnew %x' % (nbit, xref, xnew))
self.assertTrue(xnew == xref)
def test_arrays(self):
nbit = 5
M = 10
n = 20
rs = np.random.RandomState(123)
a = rs.randint(1<<nbit, size=(n, M), dtype='int32')
b = faiss.pack_bitstrings(a, nbit)
c = faiss.unpack_bitstrings(b, M, nbit)
np.testing.assert_array_equal(a, c)
def test_arrays_variable_size(self):
nbits = [10, 5, 3, 12, 6, 7, 4]
n = 20
rs = np.random.RandomState(123)
a = rs.randint(1<<16, size=(n, len(nbits)), dtype='int32')
a &= (1 << np.array(nbits)) - 1
b = faiss.pack_bitstrings(a, nbits)
c = faiss.unpack_bitstrings(b, nbits)
np.testing.assert_array_equal(a, c)
class TestIVFTransfer(unittest.TestCase):