Change default branch references from master to main. (#2029)

Summary:
This is required for the renaming of the default branch from `master` to `main`, in accordance with the new Facebook OSS guidelines.

Pull Request resolved: https://github.com/facebookresearch/faiss/pull/2029

Reviewed By: mdouze

Differential Revision: D30672862

Pulled By: beauby

fbshipit-source-id: 0b6458a4ff02a12aae14cf94057e85fdcbcbff96
pull/1978/head^2
Lucas Hosseini 2021-09-01 09:13:29 -07:00 committed by Facebook GitHub Bot
parent 151e3d7be5
commit b4eb51dae8
6 changed files with 15 additions and 16 deletions

View File

@ -426,7 +426,7 @@ workflows:
filters:
branches:
only:
- master
- main
jobs:
- deploy_linux:
name: Linux nightlies

View File

@ -2,7 +2,7 @@ name: update-doxygen
on:
push:
branches:
- master
- main
paths:
- 'faiss/**'
jobs:
@ -35,6 +35,6 @@ jobs:
git add xml cpp_api
if [ -n "$(git status --porcelain)" ]
then
git commit -m "Update API docs ($(git rev-parse --short master))."
git commit -m "Update API docs ($(git rev-parse --short main))."
git push origin gh-pages
fi

View File

@ -53,9 +53,9 @@ Tensor Core operations (mixed-precision arithmetic) are enabled on supported
hardware when operating with float16 data.
- Support k-means clustering with encoded vectors. This makes it possible to
train on larger datasets without decompressing them in RAM, and is especially
useful for binary datasets (see https://github.com/facebookresearch/faiss/blob/master/tests/test_build_blocks.py#L92).
useful for binary datasets (see https://github.com/facebookresearch/faiss/blob/main/tests/test_build_blocks.py#L92).
- Support weighted k-means. Weights can be associated to each training point
(see https://github.com/facebookresearch/faiss/blob/master/tests/test_build_blocks.py).
(see https://github.com/facebookresearch/faiss/blob/main/tests/test_build_blocks.py).
- Serialize callback in python, to write to pipes or sockets (see
https://github.com/facebookresearch/faiss/wiki/Index-IO,-cloning-and-hyper-parameter-tuning).
- Reconstruct arbitrary ids from IndexIVF + efficient remove of a small number
@ -63,12 +63,12 @@ of ids. This avoids 2 inefficiencies: O(ntotal) removal of vectors and
IndexIDMap2 on top of indexIVF. Documentation here:
https://github.com/facebookresearch/faiss/wiki/Special-operations-on-indexes.
- Support inner product as a metric in IndexHNSW (see
https://github.com/facebookresearch/faiss/blob/master/tests/test_index.py#L490).
https://github.com/facebookresearch/faiss/blob/main/tests/test_index.py#L490).
- Support PQ of sizes other than 8 bit in IndexIVFPQ.
- Demo on how to perform searches sequentially on an IVF index. This is useful
for an OnDisk index with a very large batch of queries. In that case, it is
worthwhile to scan the index sequentially (see
https://github.com/facebookresearch/faiss/blob/master/tests/test_ivflib.py#L62).
https://github.com/facebookresearch/faiss/blob/main/tests/test_ivflib.py#L62).
- Range search support for most binary indexes.
- Support for hashing-based binary indexes (see
https://github.com/facebookresearch/faiss/wiki/Binary-indexes).

View File

@ -14,7 +14,7 @@ We welcome pull requests that add significant value to Faiss. If you plan to do
a major development and contribute it back to Faiss, please contact us first before
putting too much effort into it.
1. Fork the repo and create your branch from `master`.
1. Fork the repo and create your branch from `main`.
2. If you've added code that should be tested, add tests.
3. If you've changed APIs, update the documentation.
4. Ensure the test suite passes.
@ -50,4 +50,3 @@ outlined on that page and do not file a public issue.
By contributing to Faiss, you agree that your contributions will be licensed
under the LICENSE file in the root directory of this source tree.

View File

@ -175,7 +175,7 @@ $ PYTHONPATH="$(ls -d ./build/faiss/python/build/lib*/)" pytest tests/test_*.py
### Basic example
A basic usage example is available in
[`demos/demo_ivfpq_indexing.cpp`](https://github.com/facebookresearch/faiss/blob/master/demos/demo_ivfpq_indexing.cpp).
[`demos/demo_ivfpq_indexing.cpp`](https://github.com/facebookresearch/faiss/blob/main/demos/demo_ivfpq_indexing.cpp).
It creates a small index, stores it and performs some searches. A normal runtime
is around 20s. With a fast machine and Intel MKL's BLAS it runs in 2.5s.

View File

@ -202,7 +202,7 @@ class DatasetBigANN(Dataset):
class DatasetDeep1B(Dataset):
"""
See
https://github.com/facebookresearch/faiss/tree/master/benchs#getting-deep1b
https://github.com/facebookresearch/faiss/tree/main/benchs#getting-deep1b
on how to get the data
"""