/** * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ // from Nvidia cuDNN library samples; modified to compile within faiss #include "fp16_emu.cuh" namespace faiss { namespace gpu { /* * Copyright 1993-2014 NVIDIA Corporation. All rights reserved. * * NOTICE TO LICENSEE: * * This source code and/or documentation ("Licensed Deliverables") are * subject to NVIDIA intellectual property rights under U.S. and * international Copyright laws. * * These Licensed Deliverables contained herein is PROPRIETARY and * CONFIDENTIAL to NVIDIA and is being provided under the terms and * conditions of a form of NVIDIA software license agreement by and * between NVIDIA and Licensee ("License Agreement") or electronically * accepted by Licensee. Notwithstanding any terms or conditions to * the contrary in the License Agreement, reproduction or disclosure * of the Licensed Deliverables to any third party without the express * written consent of NVIDIA is prohibited. * * NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE * LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE * SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS * PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND. * NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED * DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY, * NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE. * NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE * LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY * SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, * WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS * ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE * OF THESE LICENSED DELIVERABLES. * * U.S. Government End Users. These Licensed Deliverables are a * "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT * 1995), consisting of "commercial computer software" and "commercial * computer software documentation" as such terms are used in 48 * C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government * only as a commercial end item. Consistent with 48 C.F.R.12.212 and * 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all * U.S. Government End Users acquire the Licensed Deliverables with * only those rights set forth herein. * * Any use of the Licensed Deliverables in individual and commercial * software must include, in the user documentation and internal * comments to the code, the above Disclaimer and U.S. Government End * Users Notice. */ // Host functions for converting between FP32 and FP16 formats // Paulius Micikevicius (pauliusm@nvidia.com) half1 cpu_float2half_rn(float f) { half1 ret; union { float f; unsigned u; } un; un.f = f; unsigned x = un.u; unsigned u = (x & 0x7fffffff), remainder, shift, lsb, lsb_s1, lsb_m1; unsigned sign, exponent, mantissa; // Get rid of +NaN/-NaN case first. if (u > 0x7f800000) { ret.x = 0x7fffU; return ret; } sign = ((x >> 16) & 0x8000); // Get rid of +Inf/-Inf, +0/-0. if (u > 0x477fefff) { ret.x = sign | 0x7c00U; return ret; } if (u < 0x33000001) { ret.x = (sign | 0x0000); return ret; } exponent = ((u >> 23) & 0xff); mantissa = (u & 0x7fffff); if (exponent > 0x70) { shift = 13; exponent -= 0x70; } else { shift = 0x7e - exponent; exponent = 0; mantissa |= 0x800000; } lsb = (1 << shift); lsb_s1 = (lsb >> 1); lsb_m1 = (lsb - 1); // Round to nearest even. remainder = (mantissa & lsb_m1); mantissa >>= shift; if (remainder > lsb_s1 || (remainder == lsb_s1 && (mantissa & 0x1))) { ++mantissa; if (!(mantissa & 0x3ff)) { ++exponent; mantissa = 0; } } ret.x = (sign | (exponent << 10) | mantissa); return ret; } float cpu_half2float(half1 h) { unsigned sign = ((h.x >> 15) & 1); unsigned exponent = ((h.x >> 10) & 0x1f); unsigned mantissa = ((h.x & 0x3ff) << 13); if (exponent == 0x1f) { /* NaN or Inf */ mantissa = (mantissa ? (sign = 0, 0x7fffff) : 0); exponent = 0xff; } else if (!exponent) { /* Denorm or Zero */ if (mantissa) { unsigned int msb; exponent = 0x71; do { msb = (mantissa & 0x400000); mantissa <<= 1; /* normalize */ --exponent; } while (!msb); mantissa &= 0x7fffff; /* 1.mantissa is implicit */ } } else { exponent += 0x70; } union { int i; float f; } un; un.i = ((sign << 31) | (exponent << 23) | mantissa); return un.f; } } } // namespace