Faiss
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends
/data/users/matthijs/github_faiss/faiss/VectorTransform.cpp
1 
2 /**
3  * Copyright (c) 2015-present, Facebook, Inc.
4  * All rights reserved.
5  *
6  * This source code is licensed under the CC-by-NC license found in the
7  * LICENSE file in the root directory of this source tree.
8  */
9 
10 // Copyright 2004-present Facebook. All Rights Reserved
11 // -*- c++ -*-
12 
13 #include "VectorTransform.h"
14 
15 #include <cstdio>
16 #include <cmath>
17 #include <cstring>
18 
19 #include "utils.h"
20 #include "FaissAssert.h"
21 #include "IndexPQ.h"
22 
23 using namespace faiss;
24 
25 
26 extern "C" {
27 
28 // this is to keep the clang syntax checker happy
29 #ifndef FINTEGER
30 #define FINTEGER int
31 #endif
32 
33 
34 /* declare BLAS functions, see http://www.netlib.org/clapack/cblas/ */
35 
36 int sgemm_ (
37  const char *transa, const char *transb, FINTEGER *m, FINTEGER *
38  n, FINTEGER *k, const float *alpha, const float *a,
39  FINTEGER *lda, const float *b,
40  FINTEGER *ldb, float *beta,
41  float *c, FINTEGER *ldc);
42 
43 int ssyrk_ (
44  const char *uplo, const char *trans, FINTEGER *n, FINTEGER *k,
45  float *alpha, float *a, FINTEGER *lda,
46  float *beta, float *c, FINTEGER *ldc);
47 
48 /* Lapack functions from http://www.netlib.org/clapack/old/single/ */
49 
50 int ssyev_ (
51  const char *jobz, const char *uplo, FINTEGER *n, float *a,
52  FINTEGER *lda, float *w, float *work, FINTEGER *lwork,
53  FINTEGER *info);
54 
55 int sgesvd_(
56  const char *jobu, const char *jobvt, FINTEGER *m, FINTEGER *n,
57  float *a, FINTEGER *lda, float *s, float *u, FINTEGER *ldu, float *vt,
58  FINTEGER *ldvt, float *work, FINTEGER *lwork, FINTEGER *info);
59 
60 }
61 
62 /*********************************************
63  * VectorTransform
64  *********************************************/
65 
66 
67 
68 float * VectorTransform::apply (Index::idx_t n, const float * x) const
69 {
70  float * xt = new float[n * d_out];
71  apply_noalloc (n, x, xt);
72  return xt;
73 }
74 
75 
76 void VectorTransform::train (idx_t, const float *) {
77  // does nothing by default
78 }
79 
80 
82  idx_t , const float *,
83  float *) const
84 {
85  FAISS_ASSERT (!"reverse transform not implemented");
86 }
87 
88 
89 
90 
91 /*********************************************
92  * LinearTransform
93  *********************************************/
94 /// both d_in > d_out and d_out < d_in are supported
95 LinearTransform::LinearTransform (int d_in, int d_out,
96  bool have_bias):
97  VectorTransform (d_in, d_out), have_bias (have_bias),
98  verbose (false)
99 {}
100 
102  float * xt) const
103 {
104  FAISS_ASSERT(is_trained || !"Transformation not trained yet");
105 
106  float c_factor;
107  if (have_bias) {
108  FAISS_ASSERT (b.size() == d_out || !"Bias not initialized");
109  float * xi = xt;
110  for (int i = 0; i < n; i++)
111  for(int j = 0; j < d_out; j++)
112  *xi++ = b[j];
113  c_factor = 1.0;
114  } else {
115  c_factor = 0.0;
116  }
117 
118  FAISS_ASSERT (A.size() == d_out * d_in ||
119  !"Transformation matrix not initialized");
120 
121  float one = 1;
122  FINTEGER nbiti = d_out, ni = n, di = d_in;
123  sgemm_ ("Transposed", "Not transposed",
124  &nbiti, &ni, &di,
125  &one, A.data(), &di, x, &di, &c_factor, xt, &nbiti);
126 
127 }
128 
129 
130 void LinearTransform::transform_transpose (idx_t n, const float * y,
131  float *x) const
132 {
133  if (have_bias) { // allocate buffer to store bias-corrected data
134  float *y_new = new float [n * d_out];
135  const float *yr = y;
136  float *yw = y_new;
137  for (idx_t i = 0; i < n; i++) {
138  for (int j = 0; j < d_out; j++) {
139  *yw++ = *yr++ - b [j];
140  }
141  }
142  y = y_new;
143  }
144 
145  {
146  FINTEGER dii = d_in, doi = d_out, ni = n;
147  float one = 1.0, zero = 0.0;
148  sgemm_ ("Not", "Not", &dii, &ni, &doi,
149  &one, A.data (), &dii, y, &doi, &zero, x, &dii);
150  }
151 
152  if (have_bias) delete [] y;
153 }
154 
155 
156 /*********************************************
157  * RandomRotationMatrix
158  *********************************************/
159 
161 {
162 
163  if(d_out <= d_in) {
164  A.resize (d_out * d_in);
165  float *q = A.data();
166  float_randn(q, d_out * d_in, seed);
167  matrix_qr(d_in, d_out, q);
168  } else {
169  A.resize (d_out * d_out);
170  float *q = A.data();
171  float_randn(q, d_out * d_out, seed);
172  matrix_qr(d_out, d_out, q);
173  // remove columns
174  int i, j;
175  for (i = 0; i < d_out; i++) {
176  for(j = 0; j < d_in; j++) {
177  q[i * d_in + j] = q[i * d_out + j];
178  }
179  }
180  A.resize(d_in * d_out);
181  }
182 
183 }
184 
185 void RandomRotationMatrix::reverse_transform (idx_t n, const float * xt,
186  float *x) const
187 {
188  transform_transpose (n, xt, x);
189 }
190 
191 /*********************************************
192  * PCAMatrix
193  *********************************************/
194 
195 PCAMatrix::PCAMatrix (int d_in, int d_out,
196  float eigen_power, bool random_rotation):
197  LinearTransform(d_in, d_out, true),
198  eigen_power(eigen_power), random_rotation(random_rotation)
199 {
200  is_trained = false;
201  max_points_per_d = 1000;
202  balanced_bins = 0;
203 }
204 
205 
206 void PCAMatrix::train (Index::idx_t n, const float *x)
207 {
208  const float * x_in = x;
209 
210  x = fvecs_maybe_subsample (d_in, (size_t*)&n,
211  max_points_per_d * d_in, x, verbose);
212 
213  // compute mean
214  mean.clear(); mean.resize(d_in, 0.0);
215  if (have_bias) { // we may want to skip the bias
216  const float *xi = x;
217  for (int i = 0; i < n; i++) {
218  for(int j = 0; j < d_in; j++)
219  mean[j] += *xi++;
220  }
221  for(int j = 0; j < d_in; j++)
222  mean[j] /= n;
223  }
224  if(verbose) {
225  printf("mean=[");
226  for(int j = 0; j < d_in; j++) printf("%g ", mean[j]);
227  printf("]\n");
228  }
229 
230  if(n >= d_in) {
231  // compute covariance matrix, store it in PCA matrix
232  PCAMat.resize(d_in * d_in);
233  float * cov = PCAMat.data();
234  { // initialize with mean * mean^T term
235  float *ci = cov;
236  for(int i = 0; i < d_in; i++) {
237  for(int j = 0; j < d_in; j++)
238  *ci++ = - n * mean[i] * mean[j];
239  }
240  }
241  {
242  FINTEGER di = d_in, ni = n;
243  float one = 1.0;
244  ssyrk_ ("Up", "Non transposed",
245  &di, &ni, &one, (float*)x, &di, &one, cov, &di);
246 
247  }
248  if(verbose && d_in <= 10) {
249  float *ci = cov;
250  printf("cov=\n");
251  for(int i = 0; i < d_in; i++) {
252  for(int j = 0; j < d_in; j++)
253  printf("%10g ", *ci++);
254  printf("\n");
255  }
256  }
257 
258  { // compute eigenvalues and vectors
259  eigenvalues.resize(d_in);
260  FINTEGER info = 0, lwork = -1, di = d_in;
261  float workq;
262 
263  ssyev_ ("Vectors as well", "Upper",
264  &di, cov, &di, eigenvalues.data(), &workq, &lwork, &info);
265  lwork = FINTEGER(workq);
266  float *work = new float[lwork];
267 
268  ssyev_ ("Vectors as well", "Upper",
269  &di, cov, &di, eigenvalues.data(), work, &lwork, &info);
270 
271  if (info != 0) {
272  fprintf (stderr, "WARN ssyev info returns %d, "
273  "a very bad PCA matrix is learnt\n",
274  int(info));
275 
276  }
277 
278  delete [] work;
279 
280  if(verbose && d_in <= 10) {
281  printf("info=%ld new eigvals=[", long(info));
282  for(int j = 0; j < d_in; j++) printf("%g ", eigenvalues[j]);
283  printf("]\n");
284 
285  float *ci = cov;
286  printf("eigenvecs=\n");
287  for(int i = 0; i < d_in; i++) {
288  for(int j = 0; j < d_in; j++)
289  printf("%10.4g ", *ci++);
290  printf("\n");
291  }
292  }
293 
294  }
295 
296  // revert order of eigenvectors & values
297 
298  for(int i = 0; i < d_in / 2; i++) {
299 
300  std::swap(eigenvalues[i], eigenvalues[d_in - 1 - i]);
301  float *v1 = cov + i * d_in;
302  float *v2 = cov + (d_in - 1 - i) * d_in;
303  for(int j = 0; j < d_in; j++)
304  std::swap(v1[j], v2[j]);
305  }
306 
307  } else {
308  FAISS_ASSERT(!"Gramm matrix version not implemented "
309  "-- provide more training examples than dimensions");
310  }
311 
312 
313  if (x != x_in) delete [] x;
314 
315  prepare_Ab();
316  is_trained = true;
317 }
318 
319 void PCAMatrix::copy_from (const PCAMatrix & other)
320 {
321  FAISS_ASSERT (other.is_trained);
322  mean = other.mean;
323  eigenvalues = other.eigenvalues;
324  PCAMat = other.PCAMat;
325  prepare_Ab ();
326  is_trained = true;
327 }
328 
330 {
331 
332  if (!random_rotation) {
333  A = PCAMat;
334  A.resize(d_out * d_in); // strip off useless dimensions
335 
336  // first scale the components
337  if (eigen_power != 0) {
338  float *ai = A.data();
339  for (int i = 0; i < d_out; i++) {
340  float factor = pow(eigenvalues[i], eigen_power);
341  for(int j = 0; j < d_in; j++)
342  *ai++ *= factor;
343  }
344  }
345 
346  if (balanced_bins != 0) {
347  FAISS_ASSERT (d_out % balanced_bins == 0);
348  int dsub = d_out / balanced_bins;
349  std::vector <float> Ain;
350  std::swap(A, Ain);
351  A.resize(d_out * d_in);
352 
353  std::vector <float> accu(balanced_bins);
354  std::vector <int> counter(balanced_bins);
355 
356  // greedy assignment
357  for (int i = 0; i < d_out; i++) {
358  // find best bin
359  int best_j = -1;
360  float min_w = 1e30;
361  for (int j = 0; j < balanced_bins; j++) {
362  if (counter[j] < dsub && accu[j] < min_w) {
363  min_w = accu[j];
364  best_j = j;
365  }
366  }
367  int row_dst = best_j * dsub + counter[best_j];
368  accu[best_j] += eigenvalues[i];
369  counter[best_j] ++;
370  memcpy (&A[row_dst * d_in], &Ain[i * d_in],
371  d_in * sizeof (A[0]));
372  }
373 
374  if (verbose) {
375  printf(" bin accu=[");
376  for (int i = 0; i < balanced_bins; i++)
377  printf("%g ", accu[i]);
378  printf("]\n");
379  }
380  }
381 
382 
383  } else {
384  FAISS_ASSERT (balanced_bins == 0 ||
385  !"both balancing bins and applying a random rotation "
386  "does not make sense");
388 
389  rr.init(5);
390 
391  // apply scaling on the rotation matrix (right multiplication)
392  if (eigen_power != 0) {
393  for (int i = 0; i < d_out; i++) {
394  float factor = pow(eigenvalues[i], eigen_power);
395  for(int j = 0; j < d_out; j++)
396  rr.A[j * d_out + i] *= factor;
397  }
398  }
399 
400  A.resize(d_in * d_out);
401  {
402  FINTEGER dii = d_in, doo = d_out;
403  float one = 1.0, zero = 0.0;
404 
405  sgemm_ ("Not", "Not", &dii, &doo, &doo,
406  &one, PCAMat.data(), &dii, rr.A.data(), &doo, &zero,
407  A.data(), &dii);
408 
409  }
410 
411  }
412 
413  b.clear(); b.resize(d_out);
414 
415  for (int i = 0; i < d_out; i++) {
416  float accu = 0;
417  for (int j = 0; j < d_in; j++)
418  accu -= mean[j] * A[j + i * d_in];
419  b[i] = accu;
420  }
421 
422 }
423 
424 void PCAMatrix::reverse_transform (idx_t n, const float * xt,
425  float *x) const
426 {
427  FAISS_ASSERT (eigen_power == 0 ||
428  !"reverse only implemented for orthogonal transforms");
429  transform_transpose (n, xt, x);
430 }
431 
432 /*********************************************
433  * OPQMatrix
434  *********************************************/
435 
436 
437 OPQMatrix::OPQMatrix (int d, int M, int d2):
438  LinearTransform (d, d2 == -1 ? d : d2, false), M(M),
439  niter (50),
440  niter_pq (4), niter_pq_0 (40),
441  verbose(false)
442 {
443  is_trained = false;
444  // OPQ is quite expensive to train, so set this right.
445  max_train_points = 256 * 256;
446 }
447 
448 
449 
450 void OPQMatrix::train (Index::idx_t n, const float *x)
451 {
452 
453  const float * x_in = x;
454 
455  x = fvecs_maybe_subsample (d_in, (size_t*)&n,
456  max_train_points, x, verbose);
457 
458  // To support d_out > d_in, we pad input vectors with 0s to d_out
459  size_t d = d_out <= d_in ? d_in : d_out;
460  size_t d2 = d_out;
461 
462 #if 0
463  // what this test shows: the only way of getting bit-exact
464  // reproducible results with sgeqrf and sgesvd seems to be forcing
465  // single-threading.
466  { // test repro
467  std::vector<float> r (d * d);
468  float * rotation = r.data();
469  float_randn (rotation, d * d, 1234);
470  printf("CS0: %016lx\n",
471  ivec_checksum (128*128, (int*)rotation));
472  matrix_qr (d, d, rotation);
473  printf("CS1: %016lx\n",
474  ivec_checksum (128*128, (int*)rotation));
475  return;
476  }
477 #endif
478 
479  if (verbose) {
480  printf ("OPQMatrix::train: training an OPQ rotation matrix "
481  "for M=%d from %ld vectors in %dD -> %dD\n",
482  M, n, d_in, d_out);
483  }
484 
485  std::vector<float> xtrain (n * d);
486  // center x
487  {
488  std::vector<float> sum (d);
489  const float *xi = x;
490  for (size_t i = 0; i < n; i++) {
491  for (int j = 0; j < d_in; j++)
492  sum [j] += *xi++;
493  }
494  for (int i = 0; i < d; i++) sum[i] /= n;
495  float *yi = xtrain.data();
496  xi = x;
497  for (size_t i = 0; i < n; i++) {
498  for (int j = 0; j < d_in; j++)
499  *yi++ = *xi++ - sum[j];
500  yi += d - d_in;
501  }
502  }
503  float *rotation;
504 
505  if (A.size () == 0) {
506  A.resize (d * d);
507  rotation = A.data();
508  if (verbose)
509  printf(" OPQMatrix::train: making random %ld*%ld rotation\n",
510  d, d);
511  float_randn (rotation, d * d, 1234);
512  matrix_qr (d, d, rotation);
513  // we use only the d * d2 upper part of the matrix
514  A.resize (d * d2);
515  } else {
516  FAISS_ASSERT (A.size() == d * d2);
517  rotation = A.data();
518  }
519 
520 
521  std::vector<float>
522  xproj (d2 * n), pq_recons (d2 * n), xxr (d * n),
523  tmp(d * d * 4);
524 
525  std::vector<uint8_t> codes (M * n);
526  ProductQuantizer pq_regular (d2, M, 8);
527  double t0 = getmillisecs();
528  for (int iter = 0; iter < niter; iter++) {
529 
530  { // torch.mm(xtrain, rotation:t())
531  FINTEGER di = d, d2i = d2, ni = n;
532  float zero = 0, one = 1;
533  sgemm_ ("Transposed", "Not transposed",
534  &d2i, &ni, &di,
535  &one, rotation, &di,
536  xtrain.data(), &di,
537  &zero, xproj.data(), &d2i);
538  }
539 
540  pq_regular.cp.max_points_per_centroid = 1000;
541  pq_regular.cp.niter = iter == 0 ? niter_pq_0 : niter_pq;
542  pq_regular.cp.verbose = verbose;
543  pq_regular.train (n, xproj.data());
544 
545  pq_regular.compute_codes (xproj.data(), codes.data(), n);
546  pq_regular.decode (codes.data(), pq_recons.data(), n);
547 
548  float pq_err = fvec_L2sqr (pq_recons.data(), xproj.data(), n * d2) / n;
549 
550  if (verbose)
551  printf (" Iteration %d (%d PQ iterations):"
552  "%.3f s, obj=%g\n", iter, pq_regular.cp.niter,
553  (getmillisecs () - t0) / 1000.0, pq_err);
554 
555  {
556  float *u = tmp.data(), *vt = &tmp [d * d];
557  float *sing_val = &tmp [2 * d * d];
558  FINTEGER di = d, d2i = d2, ni = n;
559  float one = 1, zero = 0;
560 
561  // torch.mm(xtrain:t(), pq_recons)
562  sgemm_ ("Not", "Transposed",
563  &d2i, &di, &ni,
564  &one, pq_recons.data(), &d2i,
565  xtrain.data(), &di,
566  &zero, xxr.data(), &d2i);
567 
568 
569  FINTEGER lwork = -1, info = -1;
570  float worksz;
571  // workspace query
572  sgesvd_ ("All", "All",
573  &d2i, &di, xxr.data(), &d2i,
574  sing_val,
575  vt, &d2i, u, &di,
576  &worksz, &lwork, &info);
577 
578  lwork = int(worksz);
579  std::vector<float> work (lwork);
580  // u and vt swapped
581  sgesvd_ ("All", "All",
582  &d2i, &di, xxr.data(), &d2i,
583  sing_val,
584  vt, &d2i, u, &di,
585  work.data(), &lwork, &info);
586 
587  sgemm_ ("Transposed", "Transposed",
588  &di, &d2i, &d2i,
589  &one, u, &di, vt, &d2i,
590  &zero, rotation, &di);
591 
592  }
593  pq_regular.train_type = ProductQuantizer::Train_hot_start;
594  }
595 
596  // revert A matrix
597  if (d > d_in) {
598  for (long i = 0; i < d_out; i++)
599  memmove (&A[i * d_in], &A[i * d], sizeof(A[0]) * d_in);
600  A.resize (d_in * d_out);
601  }
602 
603  if (x != x_in)
604  delete [] x;
605 
606  is_trained = true;
607 }
608 
609 
610 
611 
612 void OPQMatrix::reverse_transform (idx_t n, const float * xt,
613  float *x) const
614 {
615  transform_transpose (n, xt, x);
616 }
617 
618 /*********************************************
619  * IndexPreTransform
620  *********************************************/
621 
622 IndexPreTransform::IndexPreTransform ():
623  index(nullptr), own_fields (false)
624 {
625 }
626 
627 
628 IndexPreTransform::IndexPreTransform (
629  Index * index):
630  Index (index->d, index->metric_type),
631  index (index), own_fields (false)
632 {
633  is_trained = index->is_trained;
634  set_typename();
635 }
636 
637 
638 
639 
640 IndexPreTransform::IndexPreTransform (
641  VectorTransform * ltrans,
642  Index * index):
643  Index (index->d, index->metric_type),
644  index (index), own_fields (false)
645 {
646  is_trained = index->is_trained;
647  prepend_transform (ltrans);
648  set_typename();
649 }
650 
651 void IndexPreTransform::prepend_transform (VectorTransform *ltrans)
652 {
653  FAISS_ASSERT (ltrans->d_out == d);
654  is_trained = is_trained && ltrans->is_trained;
655  chain.insert (chain.begin(), ltrans);
656  d = ltrans->d_in;
657  set_typename ();
658 }
659 
660 
661 void IndexPreTransform::set_typename ()
662 {
663  // TODO correct this according to actual type
664  index_typename = "PreLT[" + index->index_typename + "]";
665 }
666 
667 
668 IndexPreTransform::~IndexPreTransform ()
669 {
670  if (own_fields) {
671  for (int i = 0; i < chain.size(); i++)
672  delete chain[i];
673  delete index;
674  }
675 }
676 
677 
678 
679 
680 void IndexPreTransform::train (idx_t n, const float *x)
681 {
682  int last_untrained = 0;
683  for (int i = 0; i < chain.size(); i++)
684  if (!chain[i]->is_trained) last_untrained = i;
685  if (!index->is_trained) last_untrained = chain.size();
686  const float *prev_x = x;
687 
688  for (int i = 0; i <= last_untrained; i++) {
689  if (i < chain.size()) {
690  VectorTransform *ltrans = chain [i];
691  if (!ltrans->is_trained)
692  ltrans->train(n, prev_x);
693  } else {
694  index->train (n, prev_x);
695  }
696  if (i == last_untrained) break;
697 
698  float * xt = chain[i]->apply (n, prev_x);
699  if (prev_x != x) delete [] prev_x;
700  prev_x = xt;
701  }
702 
703  if (prev_x != x) delete [] prev_x;
704  is_trained = true;
705 }
706 
707 
708 const float *IndexPreTransform::apply_chain (idx_t n, const float *x) const
709 {
710  const float *prev_x = x;
711  for (int i = 0; i < chain.size(); i++) {
712  float * xt = chain[i]->apply (n, prev_x);
713  if (prev_x != x) delete [] prev_x;
714  prev_x = xt;
715  }
716  return prev_x;
717 }
718 
719 void IndexPreTransform::add (idx_t n, const float *x)
720 {
721  FAISS_ASSERT (is_trained);
722  const float *xt = apply_chain (n, x);
723  index->add (n, xt);
724  if (xt != x) delete [] xt;
725  ntotal = index->ntotal;
726 }
727 
728 void IndexPreTransform::add_with_ids (idx_t n, const float * x,
729  const long *xids)
730 {
731  FAISS_ASSERT (is_trained);
732  const float *xt = apply_chain (n, x);
733  index->add_with_ids (n, xt, xids);
734  if (xt != x) delete [] xt;
735  ntotal = index->ntotal;
736 }
737 
738 
739 
740 
741 void IndexPreTransform::search (idx_t n, const float *x, idx_t k,
742  float *distances, idx_t *labels) const
743 {
744  FAISS_ASSERT (is_trained);
745  const float *xt = apply_chain (n, x);
746  index->search (n, xt, k, distances, labels);
747  if (xt != x) delete [] xt;
748 }
749 
750 
752  index->reset();
753  ntotal = 0;
754 }
755 
757  long nremove = index->remove_ids (sel);
758  ntotal = index->ntotal;
759  return nremove;
760 }
761 
762 
763 void IndexPreTransform::reconstruct_n (idx_t i0, idx_t ni, float *recons) const
764 {
765  float *x = chain.empty() ? recons : new float [ni * index->d];
766  // initial reconstruction
767  index->reconstruct_n (i0, ni, x);
768 
769  // revert transformations from last to first
770  for (int i = chain.size() - 1; i >= 0; i--) {
771  float *x_pre = i == 0 ? recons : new float [chain[i]->d_in * ni];
772  chain [i]->reverse_transform (ni, x, x_pre);
773  delete [] x;
774  x = x_pre;
775  }
776 }
777 
778 
779 
780 /*********************************************
781  * RemapDimensionsTransform
782  *********************************************/
783 
784 
785 RemapDimensionsTransform::RemapDimensionsTransform (
786  int d_in, int d_out, const int *map_in):
787  VectorTransform (d_in, d_out)
788 {
789  map.resize (d_out);
790  for (int i = 0; i < d_out; i++) {
791  map[i] = map_in[i];
792  FAISS_ASSERT (map[i] == -1 || (map[i] >= 0 && map[i] < d_in));
793  }
794 }
795 
796 RemapDimensionsTransform::RemapDimensionsTransform (
797  int d_in, int d_out, bool uniform): VectorTransform (d_in, d_out)
798 {
799  map.resize (d_out, -1);
800 
801  if (uniform) {
802  if (d_in < d_out) {
803  for (int i = 0; i < d_in; i++) {
804  map [i * d_out / d_in] = i;
805  }
806  } else {
807  for (int i = 0; i < d_out; i++) {
808  map [i] = i * d_in / d_out;
809  }
810  }
811  } else {
812  for (int i = 0; i < d_in && i < d_out; i++)
813  map [i] = i;
814  }
815 }
816 
817 
818 void RemapDimensionsTransform::apply_noalloc (idx_t n, const float * x,
819  float *xt) const
820 {
821  for (idx_t i = 0; i < n; i++) {
822  for (int j = 0; j < d_out; j++) {
823  xt[j] = map[j] < 0 ? 0 : x[map[j]];
824  }
825  x += d_in;
826  xt += d_out;
827  }
828 }
829 
830 void RemapDimensionsTransform::reverse_transform (idx_t n, const float * xt,
831  float *x) const
832 {
833  memset (x, 0, sizeof (*x) * n * d_in);
834  for (idx_t i = 0; i < n; i++) {
835  for (int j = 0; j < d_out; j++) {
836  if (map[j] >= 0) x[map[j]] = xt[j];
837  }
838  x += d_in;
839  xt += d_out;
840  }
841 }
void transform_transpose(idx_t n, const float *y, float *x) const
Index * index
! chain of tranforms
Randomly rotate a set of vectors.
int niter
clustering iterations
Definition: Clustering.h:26
int niter
Number of outer training iterations.
void decode(const uint8_t *code, float *x) const
decode a vector from a given code (or n vectors if third argument)
float fvec_L2sqr(const float *x, const float *y, size_t d)
Squared L2 distance between two vectors.
Definition: utils.cpp:430
void init(int seed)
must be called before the transform is used
virtual void reset() override
removes all elements from the database.
virtual void reset()=0
removes all elements from the database.
int niter_pq
Number of training iterations for the PQ.
std::vector< float > A
! whether to use the bias term
const float * fvecs_maybe_subsample(size_t d, size_t *n, size_t nmax, const float *x, bool verbose, long seed)
Definition: utils.cpp:1793
LinearTransform(int d_in=0, int d_out=0, bool have_bias=false)
both d_in &gt; d_out and d_out &lt; d_in are supported
virtual void add_with_ids(idx_t n, const float *x, const long *xids)
Definition: Index.cpp:32
virtual void train(Index::idx_t n, const float *x) override
std::vector< float > mean
Mean, size d_in.
const float * apply_chain(idx_t n, const float *x) const
std::vector< float > PCAMat
PCA matrix, size d_in * d_in.
virtual void train(idx_t n, const float *x) override
void compute_codes(const float *x, uint8_t *codes, size_t n) const
same as compute_code for several vectors
int d
vector dimension
Definition: Index.h:66
std::vector< float > b
bias vector, size d_out
virtual void reconstruct_n(idx_t i0, idx_t ni, float *recons) const
Definition: Index.cpp:50
virtual void add(idx_t n, const float *x)=0
virtual void train(Index::idx_t n, const float *x) override
int balanced_bins
try to distribute output eigenvectors in this many bins
long idx_t
all indices are this type
Definition: Index.h:64
void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override
idx_t ntotal
total nb of indexed vectors
Definition: Index.h:67
the centroids are already initialized
double getmillisecs()
ms elapsed since some arbitrary epoch
Definition: utils.cpp:71
virtual long remove_ids(const IDSelector &sel)
Definition: Index.cpp:38
virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels) const =0
virtual void apply_noalloc(idx_t n, const float *x, float *xt) const
same as apply, but result is pre-allocated
void matrix_qr(int m, int n, float *a)
Definition: utils.cpp:1206
bool own_fields
! the sub-index
int niter_pq_0
same, for the first outer iteration
virtual void reverse_transform(idx_t n, const float *xt, float *x) const override
ClusteringParameters cp
parameters used during clustering
size_t ivec_checksum(size_t n, const int *a)
compute a checksum on a table.
Definition: utils.cpp:1490
virtual void train(idx_t n, const float *x)
virtual void reverse_transform(idx_t n, const float *xt, float *x) const override
virtual void reverse_transform(idx_t n, const float *xt, float *x) const
virtual void reverse_transform(idx_t n, const float *xt, float *x) const override
reverse transform correct only when the mapping is a permuation
virtual void reverse_transform(idx_t n, const float *xt, float *x) const override
size_t max_train_points
if there are too many training points, resample
void copy_from(const PCAMatrix &other)
copy pre-trained PCA matrix
int d_out
! input dimension
OPQMatrix(int d=0, int M=1, int d2=-1)
if d2 != -1, output vectors of this dimension
void prepare_Ab()
called after mean, PCAMat and eigenvalues are computed
virtual void add(idx_t n, const float *x) override
virtual void apply_noalloc(idx_t n, const float *x, float *xt) const override
same as apply, but result is pre-allocated
bool is_trained
set if the Index does not require training, or if training is done already
Definition: Index.h:71
std::vector< float > eigenvalues
eigenvalues of covariance matrix (= squared singular values)
virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels) const override
virtual void train(idx_t n, const float *x)
Definition: Index.h:92
virtual void add_with_ids(idx_t n, const float *x, const long *xids) override
bool random_rotation
random rotation after PCA
size_t max_points_per_d
ratio between # training vectors and dimension
int max_points_per_centroid
to limit size of dataset
Definition: Clustering.h:34
float * apply(idx_t n, const float *x) const
virtual long remove_ids(const IDSelector &sel) override
virtual void apply_noalloc(idx_t n, const float *x, float *xt) const =0
same as apply, but result is pre-allocated
int M
nb of subquantizers