# -*- makefile -*- # Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the BSD+Patents license found in the # LICENSE file in the root directory of this source tree. # tested on CentOS 7, Ubuntu 16 and Ubuntu 14, see below to adjust flags to distribution. CXX = g++ -std=c++11 CXXFLAGS = -fPIC -m64 -Wall -g -O3 -fopenmp -Wno-sign-compare CPUFLAGS = -mavx -msse4 -mpopcnt LDFLAGS = -fPIC -fopenmp # common linux flags SHAREDEXT = so SHAREDFLAGS = -shared MKDIR_P = mkdir -p prefix ?= /usr/local exec_prefix ?= ${prefix} libdir = ${exec_prefix}/lib includedir = ${prefix}/include ########################################################################## # Uncomment one of the 4 BLAS/Lapack implementation options # below. They are sorted # from fastest to slowest (in our # experiments). ########################################################################## # # 1. Intel MKL # # This is the fastest BLAS implementation we tested. Unfortunately it # is not open-source and determining the correct linking flags is a # nightmare. See # # https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor # # The latest tested version is MKL 2017.0.098 (2017 Initial Release) and can # be downloaded here: # # https://registrationcenter.intel.com/en/forms/?productid=2558&licensetype=2 # # The following settings are working if MKL is installed on its default folder: # # MKLROOT = /opt/intel/compilers_and_libraries/linux/mkl/ # # LDFLAGS += -Wl,--no-as-needed -L$(MKLROOT)/lib/intel64 # LIBS += -lmkl_intel_ilp64 -lmkl_core -lmkl_gnu_thread -ldl -lpthread # # CPPFLAGS += -DFINTEGER=long # # You may have to set the LD_LIBRARY_PATH=$MKLROOT/lib/intel64 at runtime. # # If at runtime you get the error: # Intel MKL FATAL ERROR: Cannot load libmkl_avx2.so or libmkl_def.so # you may set # LD_PRELOAD=$MKLROOT/lib/intel64/libmkl_core.so:$MKLROOT/lib/intel64/libmkl_sequential.so # at runtime as well. # # 2. Openblas # # The library contains both BLAS and Lapack. About 30% slower than MKL. Please see # https://github.com/facebookresearch/faiss/wiki/Troubleshooting#slow-brute-force-search-with-openblas # to fix performance problemes with OpenBLAS # for Ubuntu 16: # sudo apt-get install libopenblas-dev python-numpy python-dev # for Ubuntu 14: # sudo apt-get install libopenblas-dev liblapack3 python-numpy python-dev CPPFLAGS += -DFINTEGER=int LIBS += -lopenblas -llapack # 3. Atlas # # Automatically tuned linear algebra package. As the name indicates, # it is tuned automatically for a give architecture, and in Linux # distributions, it the architecture is typically indicated by the # directory name, eg. atlas-sse3 = optimized for SSE3 architecture. # # BLASCFLAGS=-DFINTEGER=int # BLASLDFLAGS=/usr/lib64/atlas-sse3/libptf77blas.so.3 /usr/lib64/atlas-sse3/liblapack.so # # 4. reference implementation # # This is just a compiled version of the reference BLAS # implementation, that is not optimized at all. # # CPPFLAGS += -DFINTEGER=int # LIBS += /usr/lib64/libblas.so.3 /usr/lib64/liblapack.so.3.2 # ########################################################################## # SWIG and Python flags ########################################################################## # SWIG executable. This should be at least version 3.x SWIG = swig # The Python include directories for a given python executable can # typically be found with # # python -c "import distutils.sysconfig; print distutils.sysconfig.get_python_inc()" # python -c "import numpy ; print numpy.get_include()" # # or, for Python 3, with # # python3 -c "import distutils.sysconfig; print(distutils.sysconfig.get_python_inc())" # python3 -c "import numpy ; print(numpy.get_include())" # PYTHONCFLAGS = -I/usr/include/python2.7/ -I/usr/lib64/python2.7/site-packages/numpy/core/include/ PYTHONLIB = -lpython ########################################################################### # Cuda GPU flags ########################################################################### # root of the cuda 8 installation CUDAROOT = /usr/local/cuda-8.0 NVCC = $(CUDAROOT)/bin/nvcc NVCCLDFLAGS = -L$(CUDAROOT)/lib64 NVCCLIBS = -lcudart -lcublas -lcuda CUDACFLAGS = -I$(CUDAROOT)/include NVCCFLAGS = -I $(CUDAROOT)/targets/x86_64-linux/include/ \ -Xcompiler -fPIC \ -Xcudafe --diag_suppress=unrecognized_attribute \ -gencode arch=compute_35,code="compute_35" \ -gencode arch=compute_52,code="compute_52" \ -gencode arch=compute_60,code="compute_60" \ -lineinfo \ -ccbin $(CXX) -DFAISS_USE_FLOAT16