Faiss
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends
/data/users/matthijs/github_faiss/faiss/IndexIVF.cpp
1 /**
2  * Copyright (c) 2015-present, Facebook, Inc.
3  * All rights reserved.
4  *
5  * This source code is licensed under the BSD+Patents license found in the
6  * LICENSE file in the root directory of this source tree.
7  */
8 
9 /* Copyright 2004-present Facebook. All Rights Reserved.
10  Inverted list structure.
11 */
12 
13 #include "IndexIVF.h"
14 
15 #include <cstdio>
16 
17 #include "utils.h"
18 #include "hamming.h"
19 
20 #include "FaissAssert.h"
21 #include "IndexFlat.h"
22 #include "AuxIndexStructures.h"
23 
24 namespace faiss {
25 
26 /*****************************************
27  * IndexIVF implementation
28  ******************************************/
29 
30 
31 IndexIVF::IndexIVF (Index * quantizer, size_t d, size_t nlist,
32  MetricType metric):
33  Index (d, metric),
34  nlist (nlist),
35  nprobe (1),
36  quantizer (quantizer),
37  quantizer_trains_alone (false),
38  own_fields (false),
39  ids (nlist),
40  maintain_direct_map (false)
41 {
42  FAISS_THROW_IF_NOT (d == quantizer->d);
43  is_trained = quantizer->is_trained && (quantizer->ntotal == nlist);
44  // Spherical by default if the metric is inner_product
45  if (metric_type == METRIC_INNER_PRODUCT) {
46  cp.spherical = true;
47  }
48  // here we set a low # iterations because this is typically used
49  // for large clusterings (nb this is not used for the MultiIndex,
50  // for which quantizer_trains_alone = true)
51  cp.niter = 10;
52  cp.verbose = verbose;
53 
54 }
55 
56 IndexIVF::IndexIVF ():
57  nlist (0), nprobe (1), quantizer (nullptr),
58  quantizer_trains_alone (false), own_fields (false),
59  maintain_direct_map (false)
60 {}
61 
62 
63 void IndexIVF::add (idx_t n, const float * x)
64 {
65  add_with_ids (n, x, nullptr);
66 }
67 
68 void IndexIVF::make_direct_map (bool new_maintain_direct_map)
69 {
70  // nothing to do
71  if (new_maintain_direct_map == maintain_direct_map)
72  return;
73 
74  if (new_maintain_direct_map) {
75  direct_map.resize (ntotal, -1);
76  for (size_t key = 0; key < nlist; key++) {
77  const std::vector<long> & idlist = ids[key];
78 
79  for (long ofs = 0; ofs < idlist.size(); ofs++) {
80  FAISS_THROW_IF_NOT_MSG (
81  0 <= idlist [ofs] && idlist[ofs] < ntotal,
82  "direct map supported only for seuquential ids");
83  direct_map [idlist [ofs]] = key << 32 | ofs;
84  }
85  }
86  } else {
87  direct_map.clear ();
88  }
89  maintain_direct_map = new_maintain_direct_map;
90 }
91 
92 
94 {
95  ntotal = 0;
96  direct_map.clear();
97  for (size_t i = 0; i < ids.size(); i++)
98  ids[i].clear();
99 }
100 
101 
102 void IndexIVF::train (idx_t n, const float *x)
103 {
104  if (quantizer->is_trained && (quantizer->ntotal == nlist)) {
105  if (verbose)
106  printf ("IVF quantizer does not need training.\n");
107  } else if (quantizer_trains_alone) {
108  if (verbose)
109  printf ("IVF quantizer trains alone...\n");
110  quantizer->train (n, x);
111  FAISS_THROW_IF_NOT_MSG (quantizer->ntotal == nlist,
112  "nlist not consistent with quantizer size");
113  } else {
114  if (verbose)
115  printf ("Training IVF quantizer on %ld vectors in %dD\n",
116  n, d);
117 
118  Clustering clus (d, nlist, cp);
119 
120  quantizer->reset();
121  clus.train (n, x, *quantizer);
122  quantizer->is_trained = true;
123  }
124  if (verbose)
125  printf ("Training IVF residual\n");
126 
127  train_residual (n, x);
128  is_trained = true;
129 }
130 
131 void IndexIVF::train_residual(idx_t /*n*/, const float* /*x*/) {
132  if (verbose)
133  printf("IndexIVF: no residual training\n");
134  // does nothing by default
135 }
136 
137 
138 
140 {
141  std::vector<int> hist (nlist);
142  for (int i = 0; i < nlist; i++) {
143  hist[i] = ids[i].size();
144  }
145  return faiss::imbalance_factor (nlist, hist.data());
146 }
147 
149 {
150  std::vector<int> sizes(40);
151  for (int i = 0; i < nlist; i++) {
152  for (int j = 0; j < sizes.size(); j++) {
153  if ((ids[i].size() >> j) == 0) {
154  sizes[j]++;
155  break;
156  }
157  }
158  }
159  for (int i = 0; i < sizes.size(); i++) {
160  if (sizes[i]) {
161  printf ("list size in < %d: %d instances\n",
162  1 << i, sizes[i]);
163  }
164  }
165 
166 }
167 
168 void IndexIVF::merge_from (IndexIVF &other, idx_t add_id)
169 {
170  // minimal sanity checks
171  FAISS_THROW_IF_NOT (other.d == d);
172  FAISS_THROW_IF_NOT (other.nlist == nlist);
173  FAISS_THROW_IF_NOT_MSG ((!maintain_direct_map &&
174  !other.maintain_direct_map),
175  "direct map copy not implemented");
176  FAISS_THROW_IF_NOT_MSG (typeid (*this) == typeid (other),
177  "can only merge indexes of the same type");
178  for (long i = 0; i < nlist; i++) {
179  std::vector<idx_t> & src = other.ids[i];
180  std::vector<idx_t> & dest = ids[i];
181  for (long j = 0; j < src.size(); j++)
182  dest.push_back (src[j] + add_id);
183  src.clear();
184  }
185  merge_from_residuals (other);
186  ntotal += other.ntotal;
187  other.ntotal = 0;
188 }
189 
190 
191 
192 IndexIVF::~IndexIVF()
193 {
194  if (own_fields) delete quantizer;
195 }
196 
197 
198 
199 /*****************************************
200  * IndexIVFFlat implementation
201  ******************************************/
202 
203 IndexIVFFlat::IndexIVFFlat (Index * quantizer,
204  size_t d, size_t nlist, MetricType metric):
205  IndexIVF (quantizer, d, nlist, metric)
206 {
207  vecs.resize (nlist);
208 }
209 
210 
211 
212 
213 
214 
215 void IndexIVFFlat::add_with_ids (idx_t n, const float * x, const long *xids)
216 {
217  add_core (n, x, xids, nullptr);
218 }
219 
220 void IndexIVFFlat::add_core (idx_t n, const float * x, const long *xids,
221  const long *precomputed_idx)
222 
223 {
224  FAISS_THROW_IF_NOT (is_trained);
225  FAISS_THROW_IF_NOT_MSG (!(maintain_direct_map && xids),
226  "cannot have direct map and add with ids");
227  const long * idx;
228  ScopeDeleter<long> del;
229 
230  if (precomputed_idx) {
231  idx = precomputed_idx;
232  } else {
233  long * idx0 = new long [n];
234  quantizer->assign (n, x, idx0);
235  idx = idx0;
236  del.set (idx);
237  }
238  long n_add = 0;
239  for (size_t i = 0; i < n; i++) {
240  long id = xids ? xids[i] : ntotal + i;
241  long list_no = idx [i];
242  if (list_no < 0)
243  continue;
244  assert (list_no < nlist);
245 
246  ids[list_no].push_back (id);
247  const float *xi = x + i * d;
248  /* store the vectors */
249  for (size_t j = 0 ; j < d ; j++)
250  vecs[list_no].push_back (xi [j]);
251 
253  direct_map.push_back (list_no << 32 | (ids[list_no].size() - 1));
254  n_add++;
255  }
256  if (verbose) {
257  printf("IndexIVFFlat::add_core: added %ld / %ld vectors\n",
258  n_add, n);
259  }
260  ntotal += n_add;
261 }
262 
263 void IndexIVFFlatStats::reset()
264 {
265  memset ((void*)this, 0, sizeof (*this));
266 }
267 
268 
269 IndexIVFFlatStats indexIVFFlat_stats;
270 
272  size_t nx,
273  const float * x,
274  const long * __restrict keys,
275  float_minheap_array_t * res) const
276 {
277 
278  const size_t k = res->k;
279  size_t nlistv = 0, ndis = 0;
280 
281 #pragma omp parallel for reduction(+: nlistv, ndis)
282  for (size_t i = 0; i < nx; i++) {
283  const float * xi = x + i * d;
284  const long * keysi = keys + i * nprobe;
285  float * __restrict simi = res->get_val (i);
286  long * __restrict idxi = res->get_ids (i);
287  minheap_heapify (k, simi, idxi);
288 
289  for (size_t ik = 0; ik < nprobe; ik++) {
290  long key = keysi[ik]; /* select the list */
291  if (key < 0) {
292  // not enough centroids for multiprobe
293  continue;
294  }
295  if (key >= (long) nlist) {
296  fprintf (stderr, "Invalid key=%ld at ik=%ld nlist=%ld\n",
297  key, ik, nlist);
298  throw;
299  }
300  nlistv++;
301  const size_t list_size = ids[key].size();
302  const float * list_vecs = vecs[key].data();
303 
304  for (size_t j = 0; j < list_size; j++) {
305  const float * yj = list_vecs + d * j;
306  float ip = fvec_inner_product (xi, yj, d);
307  if (ip > simi[0]) {
308  minheap_pop (k, simi, idxi);
309  minheap_push (k, simi, idxi, ip, ids[key][j]);
310  }
311  }
312  ndis += list_size;
313  }
314  minheap_reorder (k, simi, idxi);
315  }
316  indexIVFFlat_stats.nq += nx;
317  indexIVFFlat_stats.nlist += nlistv;
318  indexIVFFlat_stats.ndis += ndis;
319 }
320 
321 
323  size_t nx,
324  const float * x,
325  const long * __restrict keys,
326  float_maxheap_array_t * res) const
327 {
328  const size_t k = res->k;
329  size_t nlistv = 0, ndis = 0;
330 
331 #pragma omp parallel for reduction(+: nlistv, ndis)
332  for (size_t i = 0; i < nx; i++) {
333  const float * xi = x + i * d;
334  const long * keysi = keys + i * nprobe;
335  float * __restrict disi = res->get_val (i);
336  long * __restrict idxi = res->get_ids (i);
337  maxheap_heapify (k, disi, idxi);
338 
339  for (size_t ik = 0; ik < nprobe; ik++) {
340  long key = keysi[ik]; /* select the list */
341  if (key < 0) {
342  // not enough centroids for multiprobe
343  continue;
344  }
345  if (key >= (long) nlist) {
346  fprintf (stderr, "Invalid key=%ld at ik=%ld nlist=%ld\n",
347  key, ik, nlist);
348  throw;
349  }
350  nlistv++;
351  const size_t list_size = ids[key].size();
352  const float * list_vecs = vecs[key].data();
353 
354  for (size_t j = 0; j < list_size; j++) {
355  const float * yj = list_vecs + d * j;
356  float disij = fvec_L2sqr (xi, yj, d);
357  if (disij < disi[0]) {
358  maxheap_pop (k, disi, idxi);
359  maxheap_push (k, disi, idxi, disij, ids[key][j]);
360  }
361  }
362  ndis += list_size;
363  }
364  maxheap_reorder (k, disi, idxi);
365  }
366  indexIVFFlat_stats.nq += nx;
367  indexIVFFlat_stats.nlist += nlistv;
368  indexIVFFlat_stats.ndis += ndis;
369 }
370 
371 
372 void IndexIVFFlat::search (idx_t n, const float *x, idx_t k,
373  float *distances, idx_t *labels) const
374 {
375  idx_t * idx = new idx_t [n * nprobe];
376  ScopeDeleter <idx_t> del (idx);
377  quantizer->assign (n, x, idx, nprobe);
378  search_preassigned (n, x, k, idx, distances, labels);
379 }
380 
381 
382 void IndexIVFFlat::search_preassigned (idx_t n, const float *x, idx_t k,
383  const idx_t *idx,
384  float *distances, idx_t *labels) const
385 {
386  if (metric_type == METRIC_INNER_PRODUCT) {
387  float_minheap_array_t res = {
388  size_t(n), size_t(k), labels, distances};
389  search_knn_inner_product (n, x, idx, &res);
390 
391  } else if (metric_type == METRIC_L2) {
392  float_maxheap_array_t res = {
393  size_t(n), size_t(k), labels, distances};
394  search_knn_L2sqr (n, x, idx, &res);
395  }
396 
397 }
398 
399 
400 void IndexIVFFlat::range_search (idx_t nx, const float *x, float radius,
401  RangeSearchResult *result) const
402 {
403  idx_t * keys = new idx_t [nx * nprobe];
404  ScopeDeleter<idx_t> del (keys);
405  quantizer->assign (nx, x, keys, nprobe);
406 
407 #pragma omp parallel
408  {
409  RangeSearchPartialResult pres(result);
410 
411  for (size_t i = 0; i < nx; i++) {
412  const float * xi = x + i * d;
413  const long * keysi = keys + i * nprobe;
414 
416  pres.new_result (i);
417 
418  for (size_t ik = 0; ik < nprobe; ik++) {
419  long key = keysi[ik]; /* select the list */
420  if (key < 0 || key >= (long) nlist) {
421  fprintf (stderr, "Invalid key=%ld at ik=%ld nlist=%ld\n",
422  key, ik, nlist);
423  throw;
424  }
425 
426  const size_t list_size = ids[key].size();
427  const float * list_vecs = vecs[key].data();
428 
429  for (size_t j = 0; j < list_size; j++) {
430  const float * yj = list_vecs + d * j;
431  if (metric_type == METRIC_L2) {
432  float disij = fvec_L2sqr (xi, yj, d);
433  if (disij < radius) {
434  qres.add (disij, ids[key][j]);
435  }
436  } else if (metric_type == METRIC_INNER_PRODUCT) {
437  float disij = fvec_inner_product(xi, yj, d);
438  if (disij > radius) {
439  qres.add (disij, ids[key][j]);
440  }
441  }
442  }
443  }
444  }
445 
446  pres.finalize ();
447  }
448 }
449 
451 {
452  IndexIVFFlat &other = dynamic_cast<IndexIVFFlat &> (other_in);
453  for (int i = 0; i < nlist; i++) {
454  std::vector<float> & src = other.vecs[i];
455  std::vector<float> & dest = vecs[i];
456  for (int j = 0; j < src.size(); j++)
457  dest.push_back (src[j]);
458  src.clear();
459  }
460 }
461 
462 void IndexIVFFlat::copy_subset_to (IndexIVFFlat & other, int subset_type,
463  long a1, long a2) const
464 {
465  FAISS_THROW_IF_NOT (nlist == other.nlist);
466  FAISS_THROW_IF_NOT (!other.maintain_direct_map);
467 
468  for (long list_no = 0; list_no < nlist; list_no++) {
469  const std::vector<idx_t> & ids_in = ids[list_no];
470  std::vector<idx_t> & ids_out = other.ids[list_no];
471  const std::vector<float> & vecs_in = vecs[list_no];
472  std::vector<float> & vecs_out = other.vecs[list_no];
473 
474  for (long i = 0; i < ids_in.size(); i++) {
475  idx_t id = ids_in[i];
476  if (subset_type == 0 && a1 <= id && id < a2) {
477  ids_out.push_back (id);
478  vecs_out.insert (vecs_out.end(),
479  vecs_in.begin() + i * d,
480  vecs_in.begin() + (i + 1) * d);
481  other.ntotal++;
482  }
483  }
484  }
485 }
486 
487 void IndexIVFFlat::update_vectors (int n, idx_t *new_ids, const float *x)
488 {
489  FAISS_THROW_IF_NOT (maintain_direct_map);
490  FAISS_THROW_IF_NOT (is_trained);
491  std::vector<idx_t> assign (n);
492  quantizer->assign (n, x, assign.data());
493 
494  for (int i = 0; i < n; i++) {
495  idx_t id = new_ids[i];
496  FAISS_THROW_IF_NOT_MSG (0 <= id && id < ntotal,
497  "id to update out of range");
498  { // remove old one
499  long dm = direct_map[id];
500  long ofs = dm & 0xffffffff;
501  long il = dm >> 32;
502  size_t l = ids[il].size();
503  if (ofs != l - 1) {
504  long id2 = ids[il].back();
505  ids[il][ofs] = id2;
506  direct_map[id2] = (il << 32) | ofs;
507  memcpy (vecs[il].data() + ofs * d,
508  vecs[il].data() + (l - 1) * d,
509  d * sizeof(vecs[il][0]));
510  }
511  ids[il].pop_back();
512  vecs[il].resize((l - 1) * d);
513  }
514  { // insert new one
515  long il = assign[i];
516  size_t l = ids[il].size();
517  long dm = (il << 32) | l;
518  direct_map[id] = dm;
519  ids[il].push_back (id);
520  vecs[il].resize((l + 1) * d);
521  memcpy (vecs[il].data() + l * d,
522  x + i * d,
523  d * sizeof(vecs[il][0]));
524  }
525  }
526 
527 }
528 
529 
530 
531 
533 {
534  IndexIVF::reset();
535  for (size_t key = 0; key < nlist; key++) {
536  vecs[key].clear();
537  }
538 }
539 
541 {
542  FAISS_THROW_IF_NOT_MSG (!maintain_direct_map,
543  "direct map remove not implemented");
544  long nremove = 0;
545 #pragma omp parallel for reduction(+: nremove)
546  for (long i = 0; i < nlist; i++) {
547  std::vector<idx_t> & idsi = ids[i];
548  float *vecsi = vecs[i].data();
549 
550  long l = idsi.size(), j = 0;
551  while (j < l) {
552  if (sel.is_member (idsi[j])) {
553  l--;
554  idsi [j] = idsi [l];
555  memmove (vecsi + j * d,
556  vecsi + l * d, d * sizeof (float));
557  } else {
558  j++;
559  }
560  }
561  if (l < idsi.size()) {
562  nremove += idsi.size() - l;
563  idsi.resize (l);
564  vecs[i].resize (l * d);
565  }
566  }
567  ntotal -= nremove;
568  return nremove;
569 }
570 
571 
572 void IndexIVFFlat::reconstruct (idx_t key, float * recons) const
573 {
574  FAISS_THROW_IF_NOT_MSG (direct_map.size() == ntotal,
575  "direct map is not initialized");
576  int list_no = direct_map[key] >> 32;
577  int ofs = direct_map[key] & 0xffffffff;
578  memcpy (recons, &vecs[list_no][ofs * d], d * sizeof(recons[0]));
579 }
580 
581 
582 
583 
584 /*****************************************
585  * IndexIVFFlatIPBounds implementation
586  ******************************************/
587 
588 IndexIVFFlatIPBounds::IndexIVFFlatIPBounds (
589  Index * quantizer, size_t d, size_t nlist,
590  size_t fsize):
591  IndexIVFFlat(quantizer, d, nlist, METRIC_INNER_PRODUCT), fsize(fsize)
592 {
593  part_norms.resize(nlist);
594 }
595 
596 
597 
598 void IndexIVFFlatIPBounds::add_core (idx_t n, const float * x, const long *xids,
599  const long *precomputed_idx) {
600 
601  FAISS_THROW_IF_NOT (is_trained);
602  const long * idx;
603  ScopeDeleter<long> del;
604 
605  if (precomputed_idx) {
606  idx = precomputed_idx;
607  } else {
608  long * idx0 = new long [n];
609  quantizer->assign (n, x, idx0);
610  idx = idx0;
611  del.set (idx);
612  }
613  IndexIVFFlat::add_core(n, x, xids, idx);
614 
615  // compute
616  const float * xi = x + fsize;
617  for (size_t i = 0; i < n; i++) {
618  float norm = std::sqrt (fvec_norm_L2sqr (xi, d - fsize));
619  part_norms[idx[i]].push_back(norm);
620  xi += d;
621  }
622 
623 
624 }
625 
626 namespace {
627 
628 void search_bounds_knn_inner_product (
629  const IndexIVFFlatIPBounds & ivf,
630  const float *x,
631  const long *keys,
633  const float *qnorms)
634 {
635 
636  size_t k = res->k, nx = res->nh, nprobe = ivf.nprobe;
637  size_t d = ivf.d;
638  int fsize = ivf.fsize;
639 
640  size_t nlistv = 0, ndis = 0, npartial = 0;
641 
642 #pragma omp parallel for reduction(+: nlistv, ndis, npartial)
643  for (size_t i = 0; i < nx; i++) {
644  const float * xi = x + i * d;
645  const long * keysi = keys + i * nprobe;
646  float qnorm = qnorms[i];
647  float * __restrict simi = res->get_val (i);
648  long * __restrict idxi = res->get_ids (i);
649  minheap_heapify (k, simi, idxi);
650 
651  for (size_t ik = 0; ik < nprobe; ik++) {
652  long key = keysi[ik]; /* select the list */
653  if (key < 0) {
654  // not enough centroids for multiprobe
655  continue;
656  }
657  assert (key < (long) ivf.nlist);
658  nlistv++;
659 
660  const size_t list_size = ivf.ids[key].size();
661  const float * yj = ivf.vecs[key].data();
662  const float * bnorms = ivf.part_norms[key].data();
663 
664  for (size_t j = 0; j < list_size; j++) {
665  float ip_part = fvec_inner_product (xi, yj, fsize);
666  float bound = ip_part + bnorms[j] * qnorm;
667 
668  if (bound > simi[0]) {
669  float ip = ip_part + fvec_inner_product (
670  xi + fsize, yj + fsize, d - fsize);
671  if (ip > simi[0]) {
672  minheap_pop (k, simi, idxi);
673  minheap_push (k, simi, idxi, ip, ivf.ids[key][j]);
674  }
675  ndis ++;
676  }
677  yj += d;
678  }
679  npartial += list_size;
680  }
681  minheap_reorder (k, simi, idxi);
682  }
683  indexIVFFlat_stats.nq += nx;
684  indexIVFFlat_stats.nlist += nlistv;
685  indexIVFFlat_stats.ndis += ndis;
686  indexIVFFlat_stats.npartial += npartial;
687 }
688 
689 
690 }
691 
692 
694  idx_t n, const float *x, idx_t k,
695  float *distances, idx_t *labels) const
696 {
697  // compute query remainder norms and distances
698  idx_t * idx = new idx_t [n * nprobe];
699  ScopeDeleter<idx_t> del (idx);
700  quantizer->assign (n, x, idx, nprobe);
701 
702  float * qnorms = new float [n];
703  ScopeDeleter <float> del2 (qnorms);
704 
705 #pragma omp parallel for
706  for (size_t i = 0; i < n; i++) {
707  qnorms[i] = std::sqrt (fvec_norm_L2sqr (
708  x + i * d + fsize, d - fsize));
709  }
710 
711  float_minheap_array_t res = {
712  size_t(n), size_t(k), labels, distances};
713 
714  search_bounds_knn_inner_product (*this, x, idx, &res, qnorms);
715 
716 }
717 
718 } // namespace faiss
void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, float *distances, idx_t *labels) const
perform search, without computing the assignment to the quantizer
Definition: IndexIVF.cpp:382
int niter
clustering iterations
Definition: Clustering.h:25
result structure for a single query
float fvec_L2sqr(const float *x, const float *y, size_t d)
Squared L2 distance between two vectors.
Definition: utils.cpp:481
void search_knn_L2sqr(size_t nx, const float *x, const long *keys, float_maxheap_array_t *res) const
Implementation of the search for the L2 metric.
Definition: IndexIVF.cpp:322
T * get_val(size_t key)
Return the list of values for a heap.
Definition: Heap.h:360
double imbalance_factor() const
1= perfectly balanced, &gt;1: imbalanced
Definition: IndexIVF.cpp:139
virtual void reset()=0
removes all elements from the database.
size_t nprobe
number of probes at query time
Definition: IndexIVF.h:47
virtual void train(idx_t, const float *)
Definition: Index.h:89
void reconstruct(idx_t key, float *recons) const override
Definition: IndexIVF.cpp:572
void assign(idx_t n, const float *x, idx_t *labels, idx_t k=1)
Definition: Index.cpp:23
bool quantizer_trains_alone
just pass over the trainset to quantizer
Definition: IndexIVF.h:50
void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result) const override
Definition: IndexIVF.cpp:400
void copy_subset_to(IndexIVFFlat &other, int subset_type, long a1, long a2) const
Definition: IndexIVF.cpp:462
void merge_from_residuals(IndexIVF &other) override
Definition: IndexIVF.cpp:450
virtual void add_with_ids(idx_t n, const float *x, const long *xids)
Definition: Index.cpp:30
virtual void train_residual(idx_t n, const float *x)
Definition: IndexIVF.cpp:131
size_t k
allocated size per heap
Definition: Heap.h:355
double imbalance_factor(int n, int k, const long *assign)
a balanced assignment has a IF of 1
Definition: utils.cpp:1593
long remove_ids(const IDSelector &sel) override
Definition: IndexIVF.cpp:540
std::vector< std::vector< long > > ids
Inverted lists for indexes.
Definition: IndexIVF.h:55
int d
vector dimension
Definition: Index.h:64
Index * quantizer
quantizer that maps vectors to inverted lists
Definition: IndexIVF.h:49
void train(idx_t n, const float *x) override
Trains the quantizer and calls train_residual to train sub-quantizers.
Definition: IndexIVF.cpp:102
ClusteringParameters cp
to override default clustering params
Definition: IndexIVF.h:53
void add_with_ids(idx_t n, const float *x, const long *xids) override
implemented for all IndexIVF* classes
Definition: IndexIVF.cpp:215
bool own_fields
whether object owns the quantizer
Definition: IndexIVF.h:51
long idx_t
all indices are this type
Definition: Index.h:62
void reset() override
removes all elements from the database.
Definition: IndexIVF.cpp:532
idx_t ntotal
total nb of indexed vectors
Definition: Index.h:65
bool verbose
verbosity level
Definition: Index.h:66
void reset() override
removes all elements from the database.
Definition: IndexIVF.cpp:93
QueryResult & new_result(idx_t qno)
begin a new result
void update_vectors(int nv, idx_t *idx, const float *v)
Definition: IndexIVF.cpp:487
void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels) const override
Definition: IndexIVF.cpp:693
std::vector< std::vector< float > > part_norms
norm of remainder (dimensions fsize:d)
Definition: IndexIVF.h:213
float fvec_norm_L2sqr(const float *x, size_t d)
Definition: utils.cpp:538
size_t fsize
nb of dimensions of pre-filter
Definition: IndexIVF.h:210
the entries in the buffers are split per query
virtual void merge_from_residuals(IndexIVF &other)=0
void make_direct_map(bool new_maintain_direct_map=true)
Definition: IndexIVF.cpp:68
TI * get_ids(size_t key)
Correspponding identifiers.
Definition: Heap.h:363
MetricType metric_type
type of metric this index uses for search
Definition: Index.h:72
void print_stats() const
display some stats about the inverted lists
Definition: IndexIVF.cpp:148
void add_core(idx_t n, const float *x, const long *xids, const long *precomputed_idx) override
same as add_with_ids, with precomputed coarse quantizer
Definition: IndexIVF.cpp:598
size_t nh
number of heaps
Definition: Heap.h:354
size_t nlist
number of possible key values
Definition: IndexIVF.h:46
void add(idx_t n, const float *x) override
Quantizes x and calls add_with_key.
Definition: IndexIVF.cpp:63
virtual void train(idx_t n, const float *x, faiss::Index &index)
Index is used during the assignment stage.
Definition: Clustering.cpp:66
bool is_trained
set if the Index does not require training, or if training is done already
Definition: Index.h:69
void search_knn_inner_product(size_t nx, const float *x, const long *keys, float_minheap_array_t *res) const
Implementation of the search for the inner product metric.
Definition: IndexIVF.cpp:271
bool maintain_direct_map
map for direct access to the elements. Enables reconstruct().
Definition: IndexIVF.h:58
bool spherical
do we want normalized centroids?
Definition: Clustering.h:29
virtual void merge_from(IndexIVF &other, idx_t add_id)
Definition: IndexIVF.cpp:168
MetricType
Some algorithms support both an inner product vetsion and a L2 search version.
Definition: Index.h:43
std::vector< std::vector< float > > vecs
Definition: IndexIVF.h:135
virtual void add_core(idx_t n, const float *x, const long *xids, const long *precomputed_idx)
same as add_with_ids, with precomputed coarse quantizer
Definition: IndexIVF.cpp:220
void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels) const override
Definition: IndexIVF.cpp:372