19 #include <faiss/IndexPQ.h>
20 #include <faiss/IndexIVF.h>
21 #include <faiss/IndexFlat.h>
22 #include <faiss/index_io.h>
27 gettimeofday (&tv,
nullptr);
28 return tv.tv_sec + tv.tv_usec * 1e-6;
34 double t0 = elapsed();
40 size_t nb = 1000 * 1000;
44 size_t nt = 100 * 1000;
63 size_t nbits_subq = int (log2 (nb+1) / 2);
64 size_t ncentroids = 1 << (nhash * nbits_subq);
68 printf (
"IMI (%ld,%ld): %ld virtual centroids (target: %ld base vectors)",
69 nhash, nbits_subq, ncentroids, nb);
76 index.quantizer_trains_alone =
true;
84 printf (
"[%.3f s] Generating %ld vectors in %dD for training\n",
85 elapsed() - t0, nt, d);
87 std::vector <float> trainvecs (nt * d);
88 for (
size_t i = 0; i < nt * d; i++) {
89 trainvecs[i] = drand48();
92 printf (
"[%.3f s] Training the index\n", elapsed() - t0);
94 index.train (nt, trainvecs.data());
98 std::vector<float> queries;
101 printf (
"[%.3f s] Building a dataset of %ld vectors to index\n",
104 std::vector <float> database (nb * d);
105 for (
size_t i = 0; i < nb * d; i++) {
106 database[i] = drand48();
109 printf (
"[%.3f s] Adding the vectors to the index\n", elapsed() - t0);
111 index.add (nb, database.data());
118 queries.resize (nq * d);
119 for (
int i = i0; i < i1; i++) {
120 for (
int j = 0; j < d; j++) {
121 queries [(i - i0) * d + j] = database [i * d + j];
128 printf (
"[%.3f s] Searching the %d nearest neighbors "
129 "of %ld vectors in the index\n",
130 elapsed() - t0, k, nq);
132 std::vector<faiss::Index::idx_t> nns (k * nq);
133 std::vector<float> dis (k * nq);
135 index.search (nq, queries.data(), k, dis.data(), nns.data());
137 printf (
"[%.3f s] Query results (vector ids, then distances):\n",
140 for (
int i = 0; i < nq; i++) {
141 printf (
"query %2d: ", i);
142 for (
int j = 0; j < k; j++) {
143 printf (
"%7ld ", nns[j + i * k]);
146 for (
int j = 0; j < k; j++) {
147 printf (
"%7g ", dis[j + i * k]);
MetricType
Some algorithms support both an inner product vetsion and a L2 search version.