# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import faiss import numpy as np d = 64 # dimension nb = 100000 # database size nq = 10000 # nb of queries np.random.seed(1234) # make reproducible xb = np.random.random((nb, d)).astype('float32') # 64-dim *nb queries xb[:, 0] += np.arange(nb) / 1000. xq = np.random.random((nq, d)).astype('float32') xq[:, 0] += np.arange(nq) / 1000. m = 8 # 8 specifies that the number of sub-vector is 8 k = 4 # number of dimension in etracted vector n_bit = 4 # 4 specifies that each sub-vector is encoded as 4 bits bbs = 32 # build block size ( bbs % 32 == 0 ) for PQ index = faiss.IndexPQFastScan(d, m, n_bit, faiss.METRIC_L2) index_refine = faiss.IndexRefineFlat(index) # construct FastScan and run index refinement assert not index_refine.is_trained index_refine.train(xb) # Train vectors data index within mockup database assert index_refine.is_trained index_refine.add(xb) params = faiss.IndexRefineSearchParameters(k_factor=3) D, I = index_refine.search(xq[:5], 10, params=params) print(I) print(D) index.nprobe = 10 # make comparable with experiment above D, I = index.search(xq[:5], k) # search print(I[-5:])