Faiss
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends
/data/users/matthijs/github_faiss/faiss/IndexPQ.cpp
1 /**
2  * Copyright (c) 2015-present, Facebook, Inc.
3  * All rights reserved.
4  *
5  * This source code is licensed under the BSD+Patents license found in the
6  * LICENSE file in the root directory of this source tree.
7  */
8 
9 /* Copyright 2004-present Facebook. All Rights Reserved.
10  Index based on product quantiztion.
11 */
12 
13 #include "IndexPQ.h"
14 
15 
16 #include <cstddef>
17 #include <cstring>
18 #include <cstdio>
19 #include <cmath>
20 
21 #include <algorithm>
22 
23 #include "FaissAssert.h"
24 #include "hamming.h"
25 
26 namespace faiss {
27 
28 /*********************************************************
29  * IndexPQ implementation
30  ********************************************************/
31 
32 
33 IndexPQ::IndexPQ (int d, size_t M, size_t nbits, MetricType metric):
34  Index(d, metric), pq(d, M, nbits)
35 {
36  is_trained = false;
37  do_polysemous_training = false;
38  polysemous_ht = nbits * M + 1;
39  search_type = ST_PQ;
40  encode_signs = false;
41 }
42 
43 IndexPQ::IndexPQ ()
44 {
45  metric_type = METRIC_L2;
46  is_trained = false;
47  do_polysemous_training = false;
48  polysemous_ht = pq.nbits * pq.M + 1;
49  search_type = ST_PQ;
50  encode_signs = false;
51 }
52 
53 
54 void IndexPQ::train (idx_t n, const float *x)
55 {
56  if (!do_polysemous_training) { // standard training
57  pq.train(n, x);
58  } else {
59  idx_t ntrain_perm = polysemous_training.ntrain_permutation;
60 
61  if (ntrain_perm > n / 4)
62  ntrain_perm = n / 4;
63  if (verbose) {
64  printf ("PQ training on %ld points, remains %ld points: "
65  "training polysemous on %s\n",
66  n - ntrain_perm, ntrain_perm,
67  ntrain_perm == 0 ? "centroids" : "these");
68  }
69  pq.train(n - ntrain_perm, x);
70 
72  pq, ntrain_perm, x + (n - ntrain_perm) * d);
73  }
74  is_trained = true;
75 }
76 
77 
78 void IndexPQ::add (idx_t n, const float *x)
79 {
80  FAISS_THROW_IF_NOT (is_trained);
81  codes.resize ((n + ntotal) * pq.code_size);
83  ntotal += n;
84 }
85 
86 
87 
89 {
90  codes.clear();
91  ntotal = 0;
92 }
93 
94 void IndexPQ::reconstruct_n (idx_t i0, idx_t ni, float *recons) const
95 {
96  FAISS_THROW_IF_NOT (ni == 0 || (i0 >= 0 && i0 + ni <= ntotal));
97  for (idx_t i = 0; i < ni; i++) {
98  const uint8_t * code = &codes[(i0 + i) * pq.code_size];
99  pq.decode (code, recons + i * d);
100  }
101 }
102 
103 
104 void IndexPQ::reconstruct (idx_t key, float * recons) const
105 {
106  FAISS_THROW_IF_NOT (key >= 0 && key < ntotal);
107  pq.decode (&codes[key * pq.code_size], recons);
108 }
109 
110 
111 
112 
113 
114 
115 
116 /*****************************************
117  * IndexPQ polysemous search routines
118  ******************************************/
119 
120 
121 
122 
123 
124 void IndexPQ::search (idx_t n, const float *x, idx_t k,
125  float *distances, idx_t *labels) const
126 {
127  FAISS_THROW_IF_NOT (is_trained);
128  if (search_type == ST_PQ) { // Simple PQ search
129 
130  if (metric_type == METRIC_L2) {
131  float_maxheap_array_t res = {
132  size_t(n), size_t(k), labels, distances };
133  pq.search (x, n, codes.data(), ntotal, &res, true);
134  } else {
135  float_minheap_array_t res = {
136  size_t(n), size_t(k), labels, distances };
137  pq.search_ip (x, n, codes.data(), ntotal, &res, true);
138  }
139  indexPQ_stats.nq += n;
140  indexPQ_stats.ncode += n * ntotal;
141 
142  } else if (search_type == ST_polysemous ||
143  search_type == ST_polysemous_generalize) {
144 
145  FAISS_THROW_IF_NOT (metric_type == METRIC_L2);
146 
147  search_core_polysemous (n, x, k, distances, labels);
148 
149  } else { // code-to-code distances
150 
151  uint8_t * q_codes = new uint8_t [n * pq.code_size];
152  ScopeDeleter<uint8_t> del (q_codes);
153 
154 
155  if (!encode_signs) {
156  pq.compute_codes (x, q_codes, n);
157  } else {
158  FAISS_THROW_IF_NOT (d == pq.nbits * pq.M);
159  memset (q_codes, 0, n * pq.code_size);
160  for (size_t i = 0; i < n; i++) {
161  const float *xi = x + i * d;
162  uint8_t *code = q_codes + i * pq.code_size;
163  for (int j = 0; j < d; j++)
164  if (xi[j] > 0) code [j>>3] |= 1 << (j & 7);
165  }
166  }
167 
168  if (search_type == ST_SDC) {
169 
170  float_maxheap_array_t res = {
171  size_t(n), size_t(k), labels, distances};
172 
173  pq.search_sdc (q_codes, n, codes.data(), ntotal, &res, true);
174 
175  } else {
176  int * idistances = new int [n * k];
177  ScopeDeleter<int> del (idistances);
178 
179  int_maxheap_array_t res = {
180  size_t (n), size_t (k), labels, idistances};
181 
182  if (search_type == ST_HE) {
183 
184  hammings_knn (&res, q_codes, codes.data(),
185  ntotal, pq.code_size, true);
186 
187  } else if (search_type == ST_generalized_HE) {
188 
189  generalized_hammings_knn (&res, q_codes, codes.data(),
190  ntotal, pq.code_size, true);
191  }
192 
193  // convert distances to floats
194  for (int i = 0; i < k * n; i++)
195  distances[i] = idistances[i];
196 
197  }
198 
199 
200  indexPQ_stats.nq += n;
201  indexPQ_stats.ncode += n * ntotal;
202  }
203 }
204 
205 
206 
207 
208 
209 void IndexPQStats::reset()
210 {
211  nq = ncode = n_hamming_pass = 0;
212 }
213 
214 IndexPQStats indexPQ_stats;
215 
216 
217 template <class HammingComputer>
218 static size_t polysemous_inner_loop (
219  const IndexPQ & index,
220  const float *dis_table_qi, const uint8_t *q_code,
221  size_t k, float *heap_dis, long *heap_ids)
222 {
223 
224  int M = index.pq.M;
225  int code_size = index.pq.code_size;
226  int ksub = index.pq.ksub;
227  size_t ntotal = index.ntotal;
228  int ht = index.polysemous_ht;
229 
230  const uint8_t *b_code = index.codes.data();
231 
232  size_t n_pass_i = 0;
233 
234  HammingComputer hc (q_code, code_size);
235 
236  for (long bi = 0; bi < ntotal; bi++) {
237  int hd = hc.hamming (b_code);
238 
239  if (hd < ht) {
240  n_pass_i ++;
241 
242  float dis = 0;
243  const float * dis_table = dis_table_qi;
244  for (int m = 0; m < M; m++) {
245  dis += dis_table [b_code[m]];
246  dis_table += ksub;
247  }
248 
249  if (dis < heap_dis[0]) {
250  maxheap_pop (k, heap_dis, heap_ids);
251  maxheap_push (k, heap_dis, heap_ids, dis, bi);
252  }
253  }
254  b_code += code_size;
255  }
256  return n_pass_i;
257 }
258 
259 
260 void IndexPQ::search_core_polysemous (idx_t n, const float *x, idx_t k,
261  float *distances, idx_t *labels) const
262 {
263  FAISS_THROW_IF_NOT (pq.byte_per_idx == 1);
264 
265  // PQ distance tables
266  float * dis_tables = new float [n * pq.ksub * pq.M];
267  ScopeDeleter<float> del (dis_tables);
268  pq.compute_distance_tables (n, x, dis_tables);
269 
270  // Hamming embedding queries
271  uint8_t * q_codes = new uint8_t [n * pq.code_size];
272  ScopeDeleter<uint8_t> del2 (q_codes);
273 
274  if (false) {
275  pq.compute_codes (x, q_codes, n);
276  } else {
277 #pragma omp parallel for
278  for (idx_t qi = 0; qi < n; qi++) {
280  (dis_tables + qi * pq.M * pq.ksub,
281  q_codes + qi * pq.code_size);
282  }
283  }
284 
285  size_t n_pass = 0;
286 
287 #pragma omp parallel for reduction (+: n_pass)
288  for (idx_t qi = 0; qi < n; qi++) {
289  const uint8_t * q_code = q_codes + qi * pq.code_size;
290 
291  const float * dis_table_qi = dis_tables + qi * pq.M * pq.ksub;
292 
293  long * heap_ids = labels + qi * k;
294  float *heap_dis = distances + qi * k;
295  maxheap_heapify (k, heap_dis, heap_ids);
296 
297  if (search_type == ST_polysemous) {
298 
299  switch (pq.code_size) {
300  case 4:
301  n_pass += polysemous_inner_loop<HammingComputer4>
302  (*this, dis_table_qi, q_code, k, heap_dis, heap_ids);
303  break;
304  case 8:
305  n_pass += polysemous_inner_loop<HammingComputer8>
306  (*this, dis_table_qi, q_code, k, heap_dis, heap_ids);
307  break;
308  case 16:
309  n_pass += polysemous_inner_loop<HammingComputer16>
310  (*this, dis_table_qi, q_code, k, heap_dis, heap_ids);
311  break;
312  case 32:
313  n_pass += polysemous_inner_loop<HammingComputer32>
314  (*this, dis_table_qi, q_code, k, heap_dis, heap_ids);
315  break;
316  case 20:
317  n_pass += polysemous_inner_loop<HammingComputer20>
318  (*this, dis_table_qi, q_code, k, heap_dis, heap_ids);
319  break;
320  default:
321  if (pq.code_size % 8 == 0) {
322  n_pass += polysemous_inner_loop<HammingComputerM8>
323  (*this, dis_table_qi, q_code, k, heap_dis, heap_ids);
324  } else if (pq.code_size % 4 == 0) {
325  n_pass += polysemous_inner_loop<HammingComputerM4>
326  (*this, dis_table_qi, q_code, k, heap_dis, heap_ids);
327  } else {
328  FAISS_THROW_FMT(
329  "code size %zd not supported for polysemous",
330  pq.code_size);
331  }
332  break;
333  }
334  } else {
335  switch (pq.code_size) {
336  case 8:
337  n_pass += polysemous_inner_loop<GenHammingComputer8>
338  (*this, dis_table_qi, q_code, k, heap_dis, heap_ids);
339  break;
340  case 16:
341  n_pass += polysemous_inner_loop<GenHammingComputer16>
342  (*this, dis_table_qi, q_code, k, heap_dis, heap_ids);
343  break;
344  case 32:
345  n_pass += polysemous_inner_loop<GenHammingComputer32>
346  (*this, dis_table_qi, q_code, k, heap_dis, heap_ids);
347  break;
348  default:
349  if (pq.code_size % 8 == 0) {
350  n_pass += polysemous_inner_loop<GenHammingComputerM8>
351  (*this, dis_table_qi, q_code, k, heap_dis, heap_ids);
352  } else {
353  FAISS_THROW_FMT(
354  "code size %zd not supported for polysemous",
355  pq.code_size);
356  }
357  break;
358  }
359  }
360  maxheap_reorder (k, heap_dis, heap_ids);
361  }
362 
363  indexPQ_stats.nq += n;
364  indexPQ_stats.ncode += n * ntotal;
365  indexPQ_stats.n_hamming_pass += n_pass;
366 
367 
368 }
369 
370 
371 
372 
373 /*****************************************
374  * Stats of IndexPQ codes
375  ******************************************/
376 
377 
378 
379 
380 void IndexPQ::hamming_distance_table (idx_t n, const float *x,
381  int32_t *dis) const
382 {
383  uint8_t * q_codes = new uint8_t [n * pq.code_size];
384  ScopeDeleter<uint8_t> del (q_codes);
385 
386  pq.compute_codes (x, q_codes, n);
387 
388  hammings (q_codes, codes.data(), n, ntotal, pq.code_size, dis);
389 }
390 
391 
393  idx_t nb, const float *xb,
394  long *hist)
395 {
396  FAISS_THROW_IF_NOT (metric_type == METRIC_L2);
397  FAISS_THROW_IF_NOT (pq.code_size % 8 == 0);
398  FAISS_THROW_IF_NOT (pq.byte_per_idx == 1);
399 
400  // Hamming embedding queries
401  uint8_t * q_codes = new uint8_t [n * pq.code_size];
402  ScopeDeleter <uint8_t> del (q_codes);
403  pq.compute_codes (x, q_codes, n);
404 
405  uint8_t * b_codes ;
406  ScopeDeleter <uint8_t> del_b_codes;
407 
408  if (xb) {
409  b_codes = new uint8_t [nb * pq.code_size];
410  del_b_codes.set (b_codes);
411  pq.compute_codes (xb, b_codes, nb);
412  } else {
413  nb = ntotal;
414  b_codes = codes.data();
415  }
416  int nbits = pq.M * pq.nbits;
417  memset (hist, 0, sizeof(*hist) * (nbits + 1));
418  size_t bs = 256;
419 
420 #pragma omp parallel
421  {
422  std::vector<long> histi (nbits + 1);
423  hamdis_t *distances = new hamdis_t [nb * bs];
424  ScopeDeleter<hamdis_t> del (distances);
425 #pragma omp for
426  for (size_t q0 = 0; q0 < n; q0 += bs) {
427  // printf ("dis stats: %ld/%ld\n", q0, n);
428  size_t q1 = q0 + bs;
429  if (q1 > n) q1 = n;
430 
431  hammings (q_codes + q0 * pq.code_size, b_codes,
432  q1 - q0, nb,
433  pq.code_size, distances);
434 
435  for (size_t i = 0; i < nb * (q1 - q0); i++)
436  histi [distances [i]]++;
437  }
438 #pragma omp critical
439  {
440  for (int i = 0; i <= nbits; i++)
441  hist[i] += histi[i];
442  }
443  }
444 
445 }
446 
447 
448 
449 
450 
451 
452 
453 
454 
455 
456 
457 
458 
459 
460 
461 
462 
463 
464 
465 
466 /*****************************************
467  * MultiIndexQuantizer
468  ******************************************/
469 
470 
471 
472 template <typename T>
473 struct ArgSort {
474  const T * x;
475  bool operator() (size_t i, size_t j) {
476  return x[i] < x[j];
477  }
478 };
479 
480 
481 /** Array that maintains a permutation of its elements so that the
482  * array's elements are sorted
483  */
484 template <typename T>
485 struct SortedArray {
486  const T * x;
487  int N;
488  std::vector<int> perm;
489 
490  explicit SortedArray (int N) {
491  this->N = N;
492  perm.resize (N);
493  }
494 
495  void init (const T*x) {
496  this->x = x;
497  for (int n = 0; n < N; n++)
498  perm[n] = n;
499  ArgSort<T> cmp = {x };
500  std::sort (perm.begin(), perm.end(), cmp);
501  }
502 
503  // get smallest value
504  T get_0 () {
505  return x[perm[0]];
506  }
507 
508  // get delta between n-smallest and n-1 -smallest
509  T get_diff (int n) {
510  return x[perm[n]] - x[perm[n - 1]];
511  }
512 
513  // remap orders counted from smallest to indices in array
514  int get_ord (int n) {
515  return perm[n];
516  }
517 };
518 
519 
520 
521 /** Array has n values. Sort the k first ones and copy the other ones
522  * into elements k..n-1
523  */
524 template <class C>
525 void partial_sort (int k, int n,
526  const typename C::T * vals, typename C::TI * perm) {
527  // insert first k elts in heap
528  for (int i = 1; i < k; i++) {
529  indirect_heap_push<C> (i + 1, vals, perm, perm[i]);
530  }
531 
532  // insert next n - k elts in heap
533  for (int i = k; i < n; i++) {
534  typename C::TI id = perm[i];
535  typename C::TI top = perm[0];
536 
537  if (C::cmp(vals[top], vals[id])) {
538  indirect_heap_pop<C> (k, vals, perm);
539  indirect_heap_push<C> (k, vals, perm, id);
540  perm[i] = top;
541  } else {
542  // nothing, elt at i is good where it is.
543  }
544  }
545 
546  // order the k first elements in heap
547  for (int i = k - 1; i > 0; i--) {
548  typename C::TI top = perm[0];
549  indirect_heap_pop<C> (i + 1, vals, perm);
550  perm[i] = top;
551  }
552 }
553 
554 /** same as SortedArray, but only the k first elements are sorted */
555 template <typename T>
557  const T * x;
558  int N;
559 
560  // type of the heap: CMax = sort ascending
561  typedef CMax<T, int> HC;
562  std::vector<int> perm;
563 
564  int k; // k elements are sorted
565 
566  int initial_k, k_factor;
567 
568  explicit SemiSortedArray (int N) {
569  this->N = N;
570  perm.resize (N);
571  perm.resize (N);
572  initial_k = 3;
573  k_factor = 4;
574  }
575 
576  void init (const T*x) {
577  this->x = x;
578  for (int n = 0; n < N; n++)
579  perm[n] = n;
580  k = 0;
581  grow (initial_k);
582  }
583 
584  /// grow the sorted part of the array to size next_k
585  void grow (int next_k) {
586  if (next_k < N) {
587  partial_sort<HC> (next_k - k, N - k, x, &perm[k]);
588  k = next_k;
589  } else { // full sort of remainder of array
590  ArgSort<T> cmp = {x };
591  std::sort (perm.begin() + k, perm.end(), cmp);
592  k = N;
593  }
594  }
595 
596  // get smallest value
597  T get_0 () {
598  return x[perm[0]];
599  }
600 
601  // get delta between n-smallest and n-1 -smallest
602  T get_diff (int n) {
603  if (n >= k) {
604  // want to keep powers of 2 - 1
605  int next_k = (k + 1) * k_factor - 1;
606  grow (next_k);
607  }
608  return x[perm[n]] - x[perm[n - 1]];
609  }
610 
611  // remap orders counted from smallest to indices in array
612  int get_ord (int n) {
613  assert (n < k);
614  return perm[n];
615  }
616 };
617 
618 
619 
620 /*****************************************
621  * Find the k smallest sums of M terms, where each term is taken in a
622  * table x of n values.
623  *
624  * A combination of terms is encoded as a scalar 0 <= t < n^M. The
625  * combination t0 ... t(M-1) that correspond to the sum
626  *
627  * sum = x[0, t0] + x[1, t1] + .... + x[M-1, t(M-1)]
628  *
629  * is encoded as
630  *
631  * t = t0 + t1 * n + t2 * n^2 + ... + t(M-1) * n^(M-1)
632  *
633  * MinSumK is an object rather than a function, so that storage can be
634  * re-used over several computations with the same sizes. use_seen is
635  * good when there may be ties in the x array and it is a concern if
636  * occasionally several t's are returned.
637  *
638  * @param x size M * n, values to add up
639  * @parms k nb of results to retrieve
640  * @param M nb of terms
641  * @param n nb of distinct values
642  * @param sums output, size k, sorted
643  * @prarm terms output, size k, with encoding as above
644  *
645  ******************************************/
646 template <typename T, class SSA, bool use_seen>
647 struct MinSumK {
648  int K; ///< nb of sums to return
649  int M; ///< nb of elements to sum up
650  int N; ///< nb of possible elements for each of the M terms
651 
652  /** the heap.
653  * We use a heap to maintain a queue of sums, with the associated
654  * terms involved in the sum.
655  */
656  typedef CMin<T, long> HC;
657  size_t heap_capacity, heap_size;
658  T *bh_val;
659  long *bh_ids;
660 
661  std::vector <SSA> ssx;
662  std::vector <long> weights;
663 
664  // all results get pushed several times. When there are ties, they
665  // are popped interleaved with others, so it is not easy to
666  // identify them. Therefore, this bit array just marks elements
667  // that were seen before.
668  std::vector <uint8_t> seen;
669 
670  MinSumK (int K, int M, int N): K(K), M(M), N(N) {
671  heap_capacity = K * M;
672  // we'll do k steps, each step pushes at most M vals
673  bh_val = new T[heap_capacity];
674  bh_ids = new long[heap_capacity];
675 
676  weights.push_back (1);
677  for (int m = 1; m < M; m++)
678  weights.push_back(weights[m - 1] * N);
679 
680  if (use_seen) {
681  long n_ids = weights.back() * N;
682  seen.resize ((n_ids + 7) / 8);
683  }
684 
685  for (int m = 0; m < M; m++)
686  ssx.push_back (SSA(N));
687 
688  }
689 
690  bool is_seen (long i) {
691  return (seen[i >> 3] >> (i & 7)) & 1;
692  }
693 
694  void mark_seen (long i) {
695  if (use_seen)
696  seen [i >> 3] |= 1 << (i & 7);
697  }
698 
699  void run (const T *x, T * sums, long * terms) {
700  heap_size = 0;
701 
702  for (int m = 0; m < M; m++)
703  ssx[m].init(x + N * m);
704 
705  { // intial result: take min for all elements
706  T sum = 0;
707  terms[0] = 0;
708  mark_seen (0);
709  for (int m = 0; m < M; m++) {
710  sum += ssx[m].get_0();
711  }
712  sums[0] = sum;
713  for (int m = 0; m < M; m++) {
714  heap_push<HC> (++heap_size, bh_val, bh_ids,
715  sum + ssx[m].get_diff(1),
716  weights[m]);
717  }
718  }
719 
720  for (int k = 1; k < K; k++) {
721  // pop smallest value from heap
722  if (use_seen) {// skip already seen elements
723  while (is_seen (bh_ids[0])) {
724  assert (heap_size > 0);
725  heap_pop<HC> (heap_size--, bh_val, bh_ids);
726  }
727  }
728  assert (heap_size > 0);
729 
730  T sum = sums[k] = bh_val[0];
731  long ti = terms[k] = bh_ids[0];
732 
733  if (use_seen) {
734  mark_seen (ti);
735  heap_pop<HC> (heap_size--, bh_val, bh_ids);
736  } else {
737  do {
738  heap_pop<HC> (heap_size--, bh_val, bh_ids);
739  } while (heap_size > 0 && bh_ids[0] == ti);
740  }
741 
742  // enqueue followers
743  long ii = ti;
744  for (int m = 0; m < M; m++) {
745  long n = ii % N;
746  ii /= N;
747  if (n + 1 >= N) continue;
748 
749  enqueue_follower (ti, m, n, sum);
750  }
751  }
752 
753  /*
754  for (int k = 0; k < K; k++)
755  for (int l = k + 1; l < K; l++)
756  assert (terms[k] != terms[l]);
757  */
758 
759  // convert indices by applying permutation
760  for (int k = 0; k < K; k++) {
761  long ii = terms[k];
762  if (use_seen) {
763  // clear seen for reuse at next loop
764  seen[ii >> 3] = 0;
765  }
766  long ti = 0;
767  for (int m = 0; m < M; m++) {
768  long n = ii % N;
769  ti += weights[m] * ssx[m].get_ord(n);
770  ii /= N;
771  }
772  terms[k] = ti;
773  }
774  }
775 
776 
777  void enqueue_follower (long ti, int m, int n, T sum) {
778  T next_sum = sum + ssx[m].get_diff(n + 1);
779  long next_ti = ti + weights[m];
780  heap_push<HC> (++heap_size, bh_val, bh_ids, next_sum, next_ti);
781  }
782 
783 
784  ~MinSumK () {
785  delete [] bh_ids;
786  delete [] bh_val;
787  }
788 };
789 
790 
791 
792 
793 MultiIndexQuantizer::MultiIndexQuantizer (int d,
794  size_t M,
795  size_t nbits):
796  Index(d, METRIC_L2), pq(d, M, nbits)
797 {
798  is_trained = false;
799  pq.verbose = verbose;
800 }
801 
802 
803 
804 void MultiIndexQuantizer::train(idx_t n, const float *x)
805 {
806  pq.verbose = verbose;
807  pq.train (n, x);
808  is_trained = true;
809  // count virtual elements in index
810  ntotal = 1;
811  for (int m = 0; m < pq.M; m++)
812  ntotal *= pq.ksub;
813 }
814 
815 
816 void MultiIndexQuantizer::search (idx_t n, const float *x, idx_t k,
817  float *distances, idx_t *labels) const {
818  if (n == 0) return;
819 
820  float * dis_tables = new float [n * pq.ksub * pq.M];
821  ScopeDeleter<float> del (dis_tables);
822 
823  pq.compute_distance_tables (n, x, dis_tables);
824 
825  if (k == 1) {
826  // simple version that just finds the min in each table
827 
828 #pragma omp parallel for
829  for (int i = 0; i < n; i++) {
830  const float * dis_table = dis_tables + i * pq.ksub * pq.M;
831  float dis = 0;
832  idx_t label = 0;
833 
834  for (int s = 0; s < pq.M; s++) {
835  float vmin = HUGE_VALF;
836  idx_t lmin = -1;
837 
838  for (idx_t j = 0; j < pq.ksub; j++) {
839  if (dis_table[j] < vmin) {
840  vmin = dis_table[j];
841  lmin = j;
842  }
843  }
844  dis += vmin;
845  label |= lmin << (s * pq.nbits);
846  dis_table += pq.ksub;
847  }
848 
849  distances [i] = dis;
850  labels [i] = label;
851  }
852 
853 
854  } else {
855 
856 #pragma omp parallel if(n > 1)
857  {
859  msk(k, pq.M, pq.ksub);
860 #pragma omp for
861  for (int i = 0; i < n; i++) {
862  msk.run (dis_tables + i * pq.ksub * pq.M,
863  distances + i * k, labels + i * k);
864 
865  }
866  }
867  }
868 
869 }
870 
871 
872 void MultiIndexQuantizer::reconstruct (idx_t key, float * recons) const
873 {
874  if (pq.byte_per_idx == 1) {
875  uint8_t code[pq.M];
876  long jj = key;
877  for (int m = 0; m < pq.M; m++) {
878  long n = jj % pq.ksub;
879  jj /= pq.ksub;
880  code[m] = n;
881  }
882  pq.decode (code, recons);
883  } else if (pq.byte_per_idx == 2) {
884  uint16_t code[pq.M];
885  long jj = key;
886  for (int m = 0; m < pq.M; m++) {
887  long n = jj % pq.ksub;
888  jj /= pq.ksub;
889  code[m] = n;
890  }
891  pq.decode ((uint8_t*)code, recons);
892  } else FAISS_THROW_MSG( "only 1 or 2 bytes per index supported");
893 }
894 
895 void MultiIndexQuantizer::add(idx_t /*n*/, const float* /*x*/) {
896  FAISS_THROW_MSG(
897  "This index has virtual elements, "
898  "it does not support add");
899 }
900 
902 {
903  FAISS_THROW_MSG ( "This index has virtual elements, "
904  "it does not support reset");
905 }
906 
907 
908 
909 
910 } // END namespace faiss
int M
nb of elements to sum up
Definition: IndexPQ.cpp:649
std::vector< uint8_t > codes
Codes. Size ntotal * pq.code_size.
Definition: IndexPQ.h:34
size_t nbits
number of bits per quantization index
void decode(const uint8_t *code, float *x) const
decode a vector from a given code (or n vectors if third argument)
Hamming distance on codes.
Definition: IndexPQ.h:77
bool do_polysemous_training
false = standard PQ
Definition: IndexPQ.h:69
void train(idx_t n, const float *x) override
Definition: IndexPQ.cpp:54
size_t byte_per_idx
nb bytes per code component (1 or 2)
void reset() override
removes all elements from the database.
Definition: IndexPQ.cpp:901
void partial_sort(int k, int n, const typename C::T *vals, typename C::TI *perm)
Definition: IndexPQ.cpp:525
void train(idx_t n, const float *x) override
Definition: IndexPQ.cpp:804
CMin< T, long > HC
Definition: IndexPQ.cpp:656
void grow(int next_k)
grow the sorted part of the array to size next_k
Definition: IndexPQ.cpp:585
void compute_distance_tables(size_t nx, const float *x, float *dis_tables) const
void generalized_hammings_knn(int_maxheap_array_t *ha, const uint8_t *a, const uint8_t *b, size_t nb, size_t code_size, int ordered)
Definition: hamming.cpp:639
void compute_code_from_distance_table(const float *tab, uint8_t *code) const
void compute_codes(const float *x, uint8_t *codes, size_t n) const
same as compute_code for several vectors
int d
vector dimension
Definition: Index.h:64
void hamming_distance_histogram(idx_t n, const float *x, idx_t nb, const float *xb, long *dist_histogram)
Definition: IndexPQ.cpp:392
void search(const float *x, size_t nx, const uint8_t *codes, const size_t ncodes, float_maxheap_array_t *res, bool init_finalize_heap=true) const
size_t code_size
byte per indexed vector
Filter on generalized Hamming.
Definition: IndexPQ.h:81
size_t ksub
number of centroids for each subquantizer
void search_ip(const float *x, size_t nx, const uint8_t *codes, const size_t ncodes, float_minheap_array_t *res, bool init_finalize_heap=true) const
long idx_t
all indices are this type
Definition: Index.h:62
void hammings_knn(int_maxheap_array_t *ha, const uint8_t *a, const uint8_t *b, size_t nb, size_t ncodes, int order)
Definition: hamming.cpp:474
ProductQuantizer pq
The product quantizer used to encode the vectors.
Definition: IndexPQ.h:31
idx_t ntotal
total nb of indexed vectors
Definition: Index.h:65
bool verbose
verbosity level
Definition: Index.h:66
void add(idx_t n, const float *x) override
Definition: IndexPQ.cpp:78
int K
nb of sums to return
Definition: IndexPQ.cpp:648
void hamming_distance_table(idx_t n, const float *x, int32_t *dis) const
Definition: IndexPQ.cpp:380
void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels) const override
Definition: IndexPQ.cpp:816
void reconstruct(idx_t key, float *recons) const override
Definition: IndexPQ.cpp:104
MetricType metric_type
type of metric this index uses for search
Definition: Index.h:72
size_t M
number of subquantizers
int N
nb of possible elements for each of the M terms
Definition: IndexPQ.cpp:650
void reconstruct_n(idx_t i0, idx_t ni, float *recons) const override
Definition: IndexPQ.cpp:94
asymmetric product quantizer (default)
Definition: IndexPQ.h:76
void reconstruct(idx_t key, float *recons) const override
Definition: IndexPQ.cpp:872
HE filter (using ht) + PQ combination.
Definition: IndexPQ.h:80
void add(idx_t n, const float *x) override
add and reset will crash at runtime
Definition: IndexPQ.cpp:895
bool is_trained
set if the Index does not require training, or if training is done already
Definition: Index.h:69
void reset() override
removes all elements from the database.
Definition: IndexPQ.cpp:88
void optimize_pq_for_hamming(ProductQuantizer &pq, size_t n, const float *x) const
bool verbose
verbose during training?
void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels) const override
Definition: IndexPQ.cpp:124
symmetric product quantizer (SDC)
Definition: IndexPQ.h:79
int polysemous_ht
Hamming threshold used for polysemy.
Definition: IndexPQ.h:91
PolysemousTraining polysemous_training
parameters used for the polysemous training
Definition: IndexPQ.h:72
MetricType
Some algorithms support both an inner product version and a L2 search version.
Definition: Index.h:43