19 #include <faiss/IndexPQ.h>
20 #include <faiss/IndexIVFPQ.h>
21 #include <faiss/IndexFlat.h>
22 #include <faiss/index_io.h>
27 gettimeofday (&tv,
nullptr);
28 return tv.tv_sec + tv.tv_usec * 1e-6;
34 double t0 = elapsed();
40 size_t nb = 1000 * 1000;
41 size_t add_bs = 10000;
45 size_t nt = 100 * 1000;
71 size_t nbits_subq = 9;
72 size_t ncentroids = 1 << (nhash * nbits_subq);
73 int bytes_per_code = 16;
77 printf (
"IMI (%ld,%ld): %ld virtual centroids (target: %ld base vectors)",
78 nhash, nbits_subq, ncentroids, nb);
85 index.quantizer_trains_alone =
true;
99 printf (
"[%.3f s] Generating %ld vectors in %dD for training\n",
100 elapsed() - t0, nt, d);
102 std::vector <float> trainvecs (nt * d);
103 for (
size_t i = 0; i < nt; i++) {
104 for (
size_t j = 0; j < d; j++) {
105 trainvecs[i * d + j] = drand48();
109 printf (
"[%.3f s] Training the index\n", elapsed() - t0);
110 index.verbose =
true;
111 index.train (nt, trainvecs.data());
116 faiss::write_index(&index,
"/tmp/trained_index.faissindex");
119 std::vector<float> queries;
122 printf (
"[%.3f s] Building a dataset of %ld vectors to index\n",
125 std::vector <float> database (nb * d);
126 std::vector <long> ids (nb);
127 for (
size_t i = 0; i < nb; i++) {
128 for (
size_t j = 0; j < d; j++) {
129 database[i * d + j] = drand48();
131 ids[i] = 8760000000L + i;
134 printf (
"[%.3f s] Adding the vectors to the index\n", elapsed() - t0);
136 for (
size_t begin = 0; begin < nb; begin += add_bs) {
137 size_t end = std::min (begin + add_bs, nb);
138 index.add_with_ids (end - begin,
139 database.data() + d * begin,
148 queries.resize (nq * d);
149 for (
int i = i0; i < i1; i++) {
150 for (
int j = 0; j < d; j++) {
151 queries [(i - i0) * d + j] = database [i * d + j];
172 faiss::write_index(&index,
"/tmp/populated_index.faissindex");
176 printf (
"[%.3f s] Searching the %d nearest neighbors "
177 "of %ld vectors in the index\n",
178 elapsed() - t0, k, nq);
180 std::vector<faiss::Index::idx_t> nns (k * nq);
181 std::vector<float> dis (k * nq);
183 index.search (nq, queries.data(), k, dis.data(), nns.data());
185 printf (
"[%.3f s] Query results (vector ids, then distances):\n",
188 for (
int i = 0; i < nq; i++) {
189 printf (
"query %2d: ", i);
190 for (
int j = 0; j < k; j++) {
191 printf (
"%7ld ", nns[j + i * k]);
194 for (
int j = 0; j < k; j++) {
195 printf (
"%7g ", dis[j + i * k]);
MetricType
Some algorithms support both an inner product vetsion and a L2 search version.