Faiss
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends
demo_imi_pq.cpp
1 /**
2  * Copyright (c) 2015-present, Facebook, Inc.
3  * All rights reserved.
4  *
5  * This source code is licensed under the BSD+Patents license found in the
6  * LICENSE file in the root directory of this source tree.
7  */
8 
9 // Copyright 2004-present Facebook. All Rights Reserved
10 
11 
12 #include <cmath>
13 #include <cstdio>
14 #include <cstdlib>
15 
16 #include <sys/time.h>
17 
18 
19 #include <faiss/IndexPQ.h>
20 #include <faiss/IndexIVFPQ.h>
21 #include <faiss/IndexFlat.h>
22 #include <faiss/index_io.h>
23 
24 double elapsed ()
25 {
26  struct timeval tv;
27  gettimeofday (&tv, nullptr);
28  return tv.tv_sec + tv.tv_usec * 1e-6;
29 }
30 
31 
32 int main ()
33 {
34  double t0 = elapsed();
35 
36  // dimension of the vectors to index
37  int d = 64;
38 
39  // size of the database we plan to index
40  size_t nb = 1000 * 1000;
41  size_t add_bs = 10000; // # size of the blocks to add
42 
43  // make a set of nt training vectors in the unit cube
44  // (could be the database)
45  size_t nt = 100 * 1000;
46 
47  //---------------------------------------------------------------
48  // Define the core quantizer
49  // We choose a multiple inverted index for faster training with less data
50  // and because it usually offers best accuracy/speed trade-offs
51  //
52  // We here assume that its lifespan of this coarse quantizer will cover the
53  // lifespan of the inverted-file quantizer IndexIVFFlat below
54  // With dynamic allocation, one may give the responsability to free the
55  // quantizer to the inverted-file index (with attribute do_delete_quantizer)
56  //
57  // Note: a regular clustering algorithm would be defined as:
58  // faiss::IndexFlatL2 coarse_quantizer (d);
59  //
60  // Use nhash=2 subquantizers used to define the product coarse quantizer
61  // Number of bits: we will have 2^nbits_coarse centroids per subquantizer
62  // meaning (2^12)^nhash distinct inverted lists
63  //
64  // The parameter bytes_per_code is determined by the memory
65  // constraint, the dataset will use nb * (bytes_per_code + 8)
66  // bytes.
67  //
68  // The parameter nbits_subq is determined by the size of the dataset to index.
69  //
70  size_t nhash = 2;
71  size_t nbits_subq = 9;
72  size_t ncentroids = 1 << (nhash * nbits_subq); // total # of centroids
73  int bytes_per_code = 16;
74 
75  faiss::MultiIndexQuantizer coarse_quantizer (d, nhash, nbits_subq);
76 
77  printf ("IMI (%ld,%ld): %ld virtual centroids (target: %ld base vectors)",
78  nhash, nbits_subq, ncentroids, nb);
79 
80  // the coarse quantizer should not be dealloced before the index
81  // 4 = nb of bytes per code (d must be a multiple of this)
82  // 8 = nb of bits per sub-code (almost always 8)
83  faiss::MetricType metric = faiss::METRIC_L2; // can be METRIC_INNER_PRODUCT
84  faiss::IndexIVFPQ index (&coarse_quantizer, d, ncentroids, bytes_per_code, 8);
85  index.quantizer_trains_alone = true;
86 
87  // define the number of probes. 2048 is for high-dim, overkill in practice
88  // Use 4-1024 depending on the trade-off speed accuracy that you want
89  index.nprobe = 2048;
90 
91 
92  { // training.
93 
94  // The distribution of the training vectors should be the same
95  // as the database vectors. It could be a sub-sample of the
96  // database vectors, if sampling is not biased. Here we just
97  // randomly generate the vectors.
98 
99  printf ("[%.3f s] Generating %ld vectors in %dD for training\n",
100  elapsed() - t0, nt, d);
101 
102  std::vector <float> trainvecs (nt * d);
103  for (size_t i = 0; i < nt; i++) {
104  for (size_t j = 0; j < d; j++) {
105  trainvecs[i * d + j] = drand48();
106  }
107  }
108 
109  printf ("[%.3f s] Training the index\n", elapsed() - t0);
110  index.verbose = true;
111  index.train (nt, trainvecs.data());
112  }
113 
114  // the index can be re-loaded later with
115  // faiss::Index * idx = faiss::read_index("/tmp/trained_index.faissindex");
116  faiss::write_index(&index, "/tmp/trained_index.faissindex");
117 
118  size_t nq;
119  std::vector<float> queries;
120 
121  { // populating the database
122  printf ("[%.3f s] Building a dataset of %ld vectors to index\n",
123  elapsed() - t0, nb);
124 
125  std::vector <float> database (nb * d);
126  std::vector <long> ids (nb);
127  for (size_t i = 0; i < nb; i++) {
128  for (size_t j = 0; j < d; j++) {
129  database[i * d + j] = drand48();
130  }
131  ids[i] = 8760000000L + i;
132  }
133 
134  printf ("[%.3f s] Adding the vectors to the index\n", elapsed() - t0);
135 
136  for (size_t begin = 0; begin < nb; begin += add_bs) {
137  size_t end = std::min (begin + add_bs, nb);
138  index.add_with_ids (end - begin,
139  database.data() + d * begin,
140  ids.data() + begin);
141  }
142 
143  // remember a few elements from the database as queries
144  int i0 = 1234;
145  int i1 = 1244;
146 
147  nq = i1 - i0;
148  queries.resize (nq * d);
149  for (int i = i0; i < i1; i++) {
150  for (int j = 0; j < d; j++) {
151  queries [(i - i0) * d + j] = database [i * d + j];
152  }
153  }
154  }
155 
156  // A few notes on the internal format of the index:
157  //
158  // - the positing lists for PQ codes are index.codes, which is a
159  // std::vector < std::vector<uint8_t> >
160  // if n is the length of posting list #i, codes[i] has length bytes_per_code * n
161  //
162  // - the corresponding ids are stored in index.ids
163  //
164  // - given a vector float *x, finding which k centroids are
165  // closest to it (ie to find the nearest neighbors) can be done with
166  //
167  // long *centroid_ids = new long[k];
168  // float *distances = new float[k];
169  // index.quantizer->search (1, x, k, dis, centroids_ids);
170  //
171 
172  faiss::write_index(&index, "/tmp/populated_index.faissindex");
173 
174  { // searching the database
175  int k = 5;
176  printf ("[%.3f s] Searching the %d nearest neighbors "
177  "of %ld vectors in the index\n",
178  elapsed() - t0, k, nq);
179 
180  std::vector<faiss::Index::idx_t> nns (k * nq);
181  std::vector<float> dis (k * nq);
182 
183  index.search (nq, queries.data(), k, dis.data(), nns.data());
184 
185  printf ("[%.3f s] Query results (vector ids, then distances):\n",
186  elapsed() - t0);
187 
188  for (int i = 0; i < nq; i++) {
189  printf ("query %2d: ", i);
190  for (int j = 0; j < k; j++) {
191  printf ("%7ld ", nns[j + i * k]);
192  }
193  printf ("\n dis: ");
194  for (int j = 0; j < k; j++) {
195  printf ("%7g ", dis[j + i * k]);
196  }
197  printf ("\n");
198  }
199  }
200  return 0;
201 }
MetricType
Some algorithms support both an inner product vetsion and a L2 search version.
Definition: Index.h:43