/** * Copyright (c) 2015-present, Facebook, Inc. * All rights reserved. * * This source code is licensed under the BSD+Patents license found in the * LICENSE file in the root directory of this source tree. */ /* Copyright 2004-present Facebook. All Rights Reserved. Inverted list structure. */ #include "IndexIVF.h" #include #include "utils.h" #include "hamming.h" #include "FaissAssert.h" #include "IndexFlat.h" #include "AuxIndexStructures.h" namespace faiss { /***************************************** * IndexIVF implementation ******************************************/ IndexIVF::IndexIVF (Index * quantizer, size_t d, size_t nlist, MetricType metric): Index (d, metric), nlist (nlist), nprobe (1), quantizer (quantizer), quantizer_trains_alone (false), own_fields (false), ids (nlist), maintain_direct_map (false) { FAISS_THROW_IF_NOT (d == quantizer->d); is_trained = quantizer->is_trained && (quantizer->ntotal == nlist); // Spherical by default if the metric is inner_product if (metric_type == METRIC_INNER_PRODUCT) { cp.spherical = true; } // here we set a low # iterations because this is typically used // for large clusterings (nb this is not used for the MultiIndex, // for which quantizer_trains_alone = true) cp.niter = 10; cp.verbose = verbose; } IndexIVF::IndexIVF (): nlist (0), nprobe (1), quantizer (nullptr), quantizer_trains_alone (false), own_fields (false), maintain_direct_map (false) {} void IndexIVF::add (idx_t n, const float * x) { add_with_ids (n, x, nullptr); } void IndexIVF::make_direct_map (bool new_maintain_direct_map) { // nothing to do if (new_maintain_direct_map == maintain_direct_map) return; if (new_maintain_direct_map) { direct_map.resize (ntotal, -1); for (size_t key = 0; key < nlist; key++) { const std::vector & idlist = ids[key]; for (long ofs = 0; ofs < idlist.size(); ofs++) { FAISS_THROW_IF_NOT_MSG ( 0 <= idlist [ofs] && idlist[ofs] < ntotal, "direct map supported only for seuquential ids"); direct_map [idlist [ofs]] = key << 32 | ofs; } } } else { direct_map.clear (); } maintain_direct_map = new_maintain_direct_map; } void IndexIVF::reset () { ntotal = 0; direct_map.clear(); for (size_t i = 0; i < ids.size(); i++) ids[i].clear(); } void IndexIVF::train (idx_t n, const float *x) { if (quantizer->is_trained && (quantizer->ntotal == nlist)) { if (verbose) printf ("IVF quantizer does not need training.\n"); } else if (quantizer_trains_alone) { if (verbose) printf ("IVF quantizer trains alone...\n"); quantizer->train (n, x); FAISS_THROW_IF_NOT_MSG (quantizer->ntotal == nlist, "nlist not consistent with quantizer size"); } else { if (verbose) printf ("Training IVF quantizer on %ld vectors in %dD\n", n, d); Clustering clus (d, nlist, cp); quantizer->reset(); clus.train (n, x, *quantizer); quantizer->is_trained = true; } if (verbose) printf ("Training IVF residual\n"); train_residual (n, x); is_trained = true; } void IndexIVF::train_residual(idx_t /*n*/, const float* /*x*/) { if (verbose) printf("IndexIVF: no residual training\n"); // does nothing by default } double IndexIVF::imbalance_factor () const { std::vector hist (nlist); for (int i = 0; i < nlist; i++) { hist[i] = ids[i].size(); } return faiss::imbalance_factor (nlist, hist.data()); } void IndexIVF::print_stats () const { std::vector sizes(40); for (int i = 0; i < nlist; i++) { for (int j = 0; j < sizes.size(); j++) { if ((ids[i].size() >> j) == 0) { sizes[j]++; break; } } } for (int i = 0; i < sizes.size(); i++) { if (sizes[i]) { printf ("list size in < %d: %d instances\n", 1 << i, sizes[i]); } } } void IndexIVF::merge_from (IndexIVF &other, idx_t add_id) { // minimal sanity checks FAISS_THROW_IF_NOT (other.d == d); FAISS_THROW_IF_NOT (other.nlist == nlist); FAISS_THROW_IF_NOT_MSG ((!maintain_direct_map && !other.maintain_direct_map), "direct map copy not implemented"); FAISS_THROW_IF_NOT_MSG (typeid (*this) == typeid (other), "can only merge indexes of the same type"); for (long i = 0; i < nlist; i++) { std::vector & src = other.ids[i]; std::vector & dest = ids[i]; for (long j = 0; j < src.size(); j++) dest.push_back (src[j] + add_id); src.clear(); } merge_from_residuals (other); ntotal += other.ntotal; other.ntotal = 0; } IndexIVF::~IndexIVF() { if (own_fields) delete quantizer; } /***************************************** * IndexIVFFlat implementation ******************************************/ IndexIVFFlat::IndexIVFFlat (Index * quantizer, size_t d, size_t nlist, MetricType metric): IndexIVF (quantizer, d, nlist, metric) { vecs.resize (nlist); } void IndexIVFFlat::add_with_ids (idx_t n, const float * x, const long *xids) { add_core (n, x, xids, nullptr); } void IndexIVFFlat::add_core (idx_t n, const float * x, const long *xids, const long *precomputed_idx) { FAISS_THROW_IF_NOT (is_trained); FAISS_THROW_IF_NOT_MSG (!(maintain_direct_map && xids), "cannot have direct map and add with ids"); const long * idx; ScopeDeleter del; if (precomputed_idx) { idx = precomputed_idx; } else { long * idx0 = new long [n]; quantizer->assign (n, x, idx0); idx = idx0; del.set (idx); } long n_add = 0; for (size_t i = 0; i < n; i++) { long id = xids ? xids[i] : ntotal + i; long list_no = idx [i]; if (list_no < 0) continue; assert (list_no < nlist); ids[list_no].push_back (id); const float *xi = x + i * d; /* store the vectors */ for (size_t j = 0 ; j < d ; j++) vecs[list_no].push_back (xi [j]); if (maintain_direct_map) direct_map.push_back (list_no << 32 | (ids[list_no].size() - 1)); n_add++; } if (verbose) { printf("IndexIVFFlat::add_core: added %ld / %ld vectors\n", n_add, n); } ntotal += n_add; } void IndexIVFFlatStats::reset() { memset ((void*)this, 0, sizeof (*this)); } IndexIVFFlatStats indexIVFFlat_stats; void IndexIVFFlat::search_knn_inner_product ( size_t nx, const float * x, const long * __restrict keys, float_minheap_array_t * res) const { const size_t k = res->k; size_t nlistv = 0, ndis = 0; #pragma omp parallel for reduction(+: nlistv, ndis) for (size_t i = 0; i < nx; i++) { const float * xi = x + i * d; const long * keysi = keys + i * nprobe; float * __restrict simi = res->get_val (i); long * __restrict idxi = res->get_ids (i); minheap_heapify (k, simi, idxi); for (size_t ik = 0; ik < nprobe; ik++) { long key = keysi[ik]; /* select the list */ if (key < 0) { // not enough centroids for multiprobe continue; } if (key >= (long) nlist) { fprintf (stderr, "Invalid key=%ld at ik=%ld nlist=%ld\n", key, ik, nlist); throw; } nlistv++; const size_t list_size = ids[key].size(); const float * list_vecs = vecs[key].data(); for (size_t j = 0; j < list_size; j++) { const float * yj = list_vecs + d * j; float ip = fvec_inner_product (xi, yj, d); if (ip > simi[0]) { minheap_pop (k, simi, idxi); minheap_push (k, simi, idxi, ip, ids[key][j]); } } ndis += list_size; } minheap_reorder (k, simi, idxi); } indexIVFFlat_stats.nq += nx; indexIVFFlat_stats.nlist += nlistv; indexIVFFlat_stats.ndis += ndis; } void IndexIVFFlat::search_knn_L2sqr ( size_t nx, const float * x, const long * __restrict keys, float_maxheap_array_t * res) const { const size_t k = res->k; size_t nlistv = 0, ndis = 0; #pragma omp parallel for reduction(+: nlistv, ndis) for (size_t i = 0; i < nx; i++) { const float * xi = x + i * d; const long * keysi = keys + i * nprobe; float * __restrict disi = res->get_val (i); long * __restrict idxi = res->get_ids (i); maxheap_heapify (k, disi, idxi); for (size_t ik = 0; ik < nprobe; ik++) { long key = keysi[ik]; /* select the list */ if (key < 0) { // not enough centroids for multiprobe continue; } if (key >= (long) nlist) { fprintf (stderr, "Invalid key=%ld at ik=%ld nlist=%ld\n", key, ik, nlist); throw; } nlistv++; const size_t list_size = ids[key].size(); const float * list_vecs = vecs[key].data(); for (size_t j = 0; j < list_size; j++) { const float * yj = list_vecs + d * j; float disij = fvec_L2sqr (xi, yj, d); if (disij < disi[0]) { maxheap_pop (k, disi, idxi); maxheap_push (k, disi, idxi, disij, ids[key][j]); } } ndis += list_size; } maxheap_reorder (k, disi, idxi); } indexIVFFlat_stats.nq += nx; indexIVFFlat_stats.nlist += nlistv; indexIVFFlat_stats.ndis += ndis; } void IndexIVFFlat::search (idx_t n, const float *x, idx_t k, float *distances, idx_t *labels) const { idx_t * idx = new idx_t [n * nprobe]; ScopeDeleter del (idx); quantizer->assign (n, x, idx, nprobe); search_preassigned (n, x, k, idx, distances, labels); } void IndexIVFFlat::search_preassigned (idx_t n, const float *x, idx_t k, const idx_t *idx, float *distances, idx_t *labels) const { if (metric_type == METRIC_INNER_PRODUCT) { float_minheap_array_t res = { size_t(n), size_t(k), labels, distances}; search_knn_inner_product (n, x, idx, &res); } else if (metric_type == METRIC_L2) { float_maxheap_array_t res = { size_t(n), size_t(k), labels, distances}; search_knn_L2sqr (n, x, idx, &res); } } void IndexIVFFlat::range_search (idx_t nx, const float *x, float radius, RangeSearchResult *result) const { idx_t * keys = new idx_t [nx * nprobe]; ScopeDeleter del (keys); quantizer->assign (nx, x, keys, nprobe); #pragma omp parallel { RangeSearchPartialResult pres(result); for (size_t i = 0; i < nx; i++) { const float * xi = x + i * d; const long * keysi = keys + i * nprobe; RangeSearchPartialResult::QueryResult & qres = pres.new_result (i); for (size_t ik = 0; ik < nprobe; ik++) { long key = keysi[ik]; /* select the list */ if (key < 0 || key >= (long) nlist) { fprintf (stderr, "Invalid key=%ld at ik=%ld nlist=%ld\n", key, ik, nlist); throw; } const size_t list_size = ids[key].size(); const float * list_vecs = vecs[key].data(); for (size_t j = 0; j < list_size; j++) { const float * yj = list_vecs + d * j; if (metric_type == METRIC_L2) { float disij = fvec_L2sqr (xi, yj, d); if (disij < radius) { qres.add (disij, ids[key][j]); } } else if (metric_type == METRIC_INNER_PRODUCT) { float disij = fvec_inner_product(xi, yj, d); if (disij > radius) { qres.add (disij, ids[key][j]); } } } } } pres.finalize (); } } void IndexIVFFlat::merge_from_residuals (IndexIVF &other_in) { IndexIVFFlat &other = dynamic_cast (other_in); for (int i = 0; i < nlist; i++) { std::vector & src = other.vecs[i]; std::vector & dest = vecs[i]; for (int j = 0; j < src.size(); j++) dest.push_back (src[j]); src.clear(); } } void IndexIVFFlat::copy_subset_to (IndexIVFFlat & other, int subset_type, long a1, long a2) const { FAISS_THROW_IF_NOT (nlist == other.nlist); FAISS_THROW_IF_NOT (!other.maintain_direct_map); for (long list_no = 0; list_no < nlist; list_no++) { const std::vector & ids_in = ids[list_no]; std::vector & ids_out = other.ids[list_no]; const std::vector & vecs_in = vecs[list_no]; std::vector & vecs_out = other.vecs[list_no]; for (long i = 0; i < ids_in.size(); i++) { idx_t id = ids_in[i]; if (subset_type == 0 && a1 <= id && id < a2) { ids_out.push_back (id); vecs_out.insert (vecs_out.end(), vecs_in.begin() + i * d, vecs_in.begin() + (i + 1) * d); other.ntotal++; } } } } void IndexIVFFlat::update_vectors (int n, idx_t *new_ids, const float *x) { FAISS_THROW_IF_NOT (maintain_direct_map); FAISS_THROW_IF_NOT (is_trained); std::vector assign (n); quantizer->assign (n, x, assign.data()); for (int i = 0; i < n; i++) { idx_t id = new_ids[i]; FAISS_THROW_IF_NOT_MSG (0 <= id && id < ntotal, "id to update out of range"); { // remove old one long dm = direct_map[id]; long ofs = dm & 0xffffffff; long il = dm >> 32; size_t l = ids[il].size(); if (ofs != l - 1) { long id2 = ids[il].back(); ids[il][ofs] = id2; direct_map[id2] = (il << 32) | ofs; memcpy (vecs[il].data() + ofs * d, vecs[il].data() + (l - 1) * d, d * sizeof(vecs[il][0])); } ids[il].pop_back(); vecs[il].resize((l - 1) * d); } { // insert new one long il = assign[i]; size_t l = ids[il].size(); long dm = (il << 32) | l; direct_map[id] = dm; ids[il].push_back (id); vecs[il].resize((l + 1) * d); memcpy (vecs[il].data() + l * d, x + i * d, d * sizeof(vecs[il][0])); } } } void IndexIVFFlat::reset() { IndexIVF::reset(); for (size_t key = 0; key < nlist; key++) { vecs[key].clear(); } } long IndexIVFFlat::remove_ids (const IDSelector & sel) { FAISS_THROW_IF_NOT_MSG (!maintain_direct_map, "direct map remove not implemented"); long nremove = 0; #pragma omp parallel for reduction(+: nremove) for (long i = 0; i < nlist; i++) { std::vector & idsi = ids[i]; float *vecsi = vecs[i].data(); long l = idsi.size(), j = 0; while (j < l) { if (sel.is_member (idsi[j])) { l--; idsi [j] = idsi [l]; memmove (vecsi + j * d, vecsi + l * d, d * sizeof (float)); } else { j++; } } if (l < idsi.size()) { nremove += idsi.size() - l; idsi.resize (l); vecs[i].resize (l * d); } } ntotal -= nremove; return nremove; } void IndexIVFFlat::reconstruct (idx_t key, float * recons) const { FAISS_THROW_IF_NOT_MSG (direct_map.size() == ntotal, "direct map is not initialized"); int list_no = direct_map[key] >> 32; int ofs = direct_map[key] & 0xffffffff; memcpy (recons, &vecs[list_no][ofs * d], d * sizeof(recons[0])); } /***************************************** * IndexIVFFlatIPBounds implementation ******************************************/ IndexIVFFlatIPBounds::IndexIVFFlatIPBounds ( Index * quantizer, size_t d, size_t nlist, size_t fsize): IndexIVFFlat(quantizer, d, nlist, METRIC_INNER_PRODUCT), fsize(fsize) { part_norms.resize(nlist); } void IndexIVFFlatIPBounds::add_core (idx_t n, const float * x, const long *xids, const long *precomputed_idx) { FAISS_THROW_IF_NOT (is_trained); const long * idx; ScopeDeleter del; if (precomputed_idx) { idx = precomputed_idx; } else { long * idx0 = new long [n]; quantizer->assign (n, x, idx0); idx = idx0; del.set (idx); } IndexIVFFlat::add_core(n, x, xids, idx); // compute const float * xi = x + fsize; for (size_t i = 0; i < n; i++) { float norm = std::sqrt (fvec_norm_L2sqr (xi, d - fsize)); part_norms[idx[i]].push_back(norm); xi += d; } } namespace { void search_bounds_knn_inner_product ( const IndexIVFFlatIPBounds & ivf, const float *x, const long *keys, float_minheap_array_t *res, const float *qnorms) { size_t k = res->k, nx = res->nh, nprobe = ivf.nprobe; size_t d = ivf.d; int fsize = ivf.fsize; size_t nlistv = 0, ndis = 0, npartial = 0; #pragma omp parallel for reduction(+: nlistv, ndis, npartial) for (size_t i = 0; i < nx; i++) { const float * xi = x + i * d; const long * keysi = keys + i * nprobe; float qnorm = qnorms[i]; float * __restrict simi = res->get_val (i); long * __restrict idxi = res->get_ids (i); minheap_heapify (k, simi, idxi); for (size_t ik = 0; ik < nprobe; ik++) { long key = keysi[ik]; /* select the list */ if (key < 0) { // not enough centroids for multiprobe continue; } assert (key < (long) ivf.nlist); nlistv++; const size_t list_size = ivf.ids[key].size(); const float * yj = ivf.vecs[key].data(); const float * bnorms = ivf.part_norms[key].data(); for (size_t j = 0; j < list_size; j++) { float ip_part = fvec_inner_product (xi, yj, fsize); float bound = ip_part + bnorms[j] * qnorm; if (bound > simi[0]) { float ip = ip_part + fvec_inner_product ( xi + fsize, yj + fsize, d - fsize); if (ip > simi[0]) { minheap_pop (k, simi, idxi); minheap_push (k, simi, idxi, ip, ivf.ids[key][j]); } ndis ++; } yj += d; } npartial += list_size; } minheap_reorder (k, simi, idxi); } indexIVFFlat_stats.nq += nx; indexIVFFlat_stats.nlist += nlistv; indexIVFFlat_stats.ndis += ndis; indexIVFFlat_stats.npartial += npartial; } } void IndexIVFFlatIPBounds::search ( idx_t n, const float *x, idx_t k, float *distances, idx_t *labels) const { // compute query remainder norms and distances idx_t * idx = new idx_t [n * nprobe]; ScopeDeleter del (idx); quantizer->assign (n, x, idx, nprobe); float * qnorms = new float [n]; ScopeDeleter del2 (qnorms); #pragma omp parallel for for (size_t i = 0; i < n; i++) { qnorms[i] = std::sqrt (fvec_norm_L2sqr ( x + i * d + fsize, d - fsize)); } float_minheap_array_t res = { size_t(n), size_t(k), labels, distances}; search_bounds_knn_inner_product (*this, x, idx, &res, qnorms); } } // namespace faiss