Faiss
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends
/tmp/faiss/ProductQuantizer.h
1 /**
2  * Copyright (c) 2015-present, Facebook, Inc.
3  * All rights reserved.
4  *
5  * This source code is licensed under the BSD+Patents license found in the
6  * LICENSE file in the root directory of this source tree.
7  */
8 
9 // -*- c++ -*-
10 
11 #ifndef FAISS_PRODUCT_QUANTIZER_H
12 #define FAISS_PRODUCT_QUANTIZER_H
13 
14 #include <stdint.h>
15 
16 #include <vector>
17 
18 #include "Clustering.h"
19 #include "Heap.h"
20 
21 namespace faiss {
22 
23 /** Product Quantizer. Implemented only for METRIC_L2 */
25 
26  size_t d; ///< size of the input vectors
27  size_t M; ///< number of subquantizers
28  size_t nbits; ///< number of bits per quantization index
29 
30  // values derived from the above
31  size_t dsub; ///< dimensionality of each subvector
32  size_t byte_per_idx; ///< nb bytes per code component (1 or 2)
33  size_t code_size; ///< byte per indexed vector
34  size_t ksub; ///< number of centroids for each subquantizer
35  bool verbose; ///< verbose during training?
36 
37 
38  /// initialization
39  enum train_type_t {
40  Train_default,
41  Train_hot_start, ///< the centroids are already initialized
42  Train_shared, ///< share dictionary accross PQ segments
43  Train_hypercube, ///< intialize centroids with nbits-D hypercube
44  Train_hypercube_pca, ///< intialize centroids with nbits-D hypercube
45  };
46  train_type_t train_type;
47 
48  ClusteringParameters cp; ///< parameters used during clustering
49 
50  /// if non-NULL, use this index for assignment (should be of size
51  /// d / M)
53 
54  /// Centroid table, size M * ksub * dsub
55  std::vector<float> centroids;
56 
57  /// return the centroids associated with subvector m
58  float * get_centroids (size_t m, size_t i) {
59  return &centroids [(m * ksub + i) * dsub];
60  }
61  const float * get_centroids (size_t m, size_t i) const {
62  return &centroids [(m * ksub + i) * dsub];
63  }
64 
65  // Train the product quantizer on a set of points. A clustering
66  // can be set on input to define non-default clustering parameters
67  void train (int n, const float *x);
68 
69  ProductQuantizer(size_t d, /* dimensionality of the input vectors */
70  size_t M, /* number of subquantizers */
71  size_t nbits); /* number of bit per subvector index */
72 
73  ProductQuantizer ();
74 
75  /// compute derived values when d, M and nbits have been set
76  void set_derived_values ();
77 
78  /// Define the centroids for subquantizer m
79  void set_params (const float * centroids, int m);
80 
81  /// Quantize one vector with the product quantizer
82  void compute_code (const float * x, uint8_t * code) const ;
83 
84  /// same as compute_code for several vectors
85  void compute_codes (const float * x,
86  uint8_t * codes,
87  size_t n) const ;
88 
89  /// decode a vector from a given code (or n vectors if third argument)
90  void decode (const uint8_t *code, float *x) const;
91  void decode (const uint8_t *code, float *x, size_t n) const;
92 
93  /// If we happen to have the distance tables precomputed, this is
94  /// more efficient to compute the codes.
95  void compute_code_from_distance_table (const float *tab,
96  uint8_t *code) const;
97 
98 
99  /** Compute distance table for one vector.
100  *
101  * The distance table for x = [x_0 x_1 .. x_(M-1)] is a M * ksub
102  * matrix that contains
103  *
104  * dis_table (m, j) = || x_m - c_(m, j)||^2
105  * for m = 0..M-1 and j = 0 .. ksub - 1
106  *
107  * where c_(m, j) is the centroid no j of sub-quantizer m.
108  *
109  * @param x input vector size d
110  * @param dis_table output table, size M * ksub
111  */
112  void compute_distance_table (const float * x,
113  float * dis_table) const;
114 
115  void compute_inner_prod_table (const float * x,
116  float * dis_table) const;
117 
118 
119  /** compute distance table for several vectors
120  * @param nx nb of input vectors
121  * @param x input vector size nx * d
122  * @param dis_table output table, size nx * M * ksub
123  */
124  void compute_distance_tables (size_t nx,
125  const float * x,
126  float * dis_tables) const;
127 
128  void compute_inner_prod_tables (size_t nx,
129  const float * x,
130  float * dis_tables) const;
131 
132 
133  /** perform a search (L2 distance)
134  * @param x query vectors, size nx * d
135  * @param nx nb of queries
136  * @param codes database codes, size ncodes * byte_per_idx
137  * @param ncodes nb of nb vectors
138  * @param res heap array to store results (nh == nx)
139  * @param init_finalize_heap initialize heap (input) and sort (output)?
140  */
141  void search (const float * x,
142  size_t nx,
143  const uint8_t * codes,
144  const size_t ncodes,
145  float_maxheap_array_t *res,
146  bool init_finalize_heap = true) const;
147 
148  /** same as search, but with inner product similarity */
149  void search_ip (const float * x,
150  size_t nx,
151  const uint8_t * codes,
152  const size_t ncodes,
153  float_minheap_array_t *res,
154  bool init_finalize_heap = true) const;
155 
156 
157  /// Symmetric Distance Table
158  std::vector<float> sdc_table;
159 
160  // intitialize the SDC table from the centroids
161  void compute_sdc_table ();
162 
163  void search_sdc (const uint8_t * qcodes,
164  size_t nq,
165  const uint8_t * bcodes,
166  const size_t ncodes,
167  float_maxheap_array_t * res,
168  bool init_finalize_heap = true) const;
169 
170 };
171 
172 
173 } // namespace faiss
174 
175 
176 #endif
void set_params(const float *centroids, int m)
Define the centroids for subquantizer m.
intialize centroids with nbits-D hypercube
size_t nbits
number of bits per quantization index
void decode(const uint8_t *code, float *x) const
decode a vector from a given code (or n vectors if third argument)
size_t byte_per_idx
nb bytes per code component (1 or 2)
intialize centroids with nbits-D hypercube
void set_derived_values()
compute derived values when d, M and nbits have been set
std::vector< float > sdc_table
Symmetric Distance Table.
share dictionary accross PQ segments
size_t dsub
dimensionality of each subvector
void compute_distance_tables(size_t nx, const float *x, float *dis_tables) const
void compute_code_from_distance_table(const float *tab, uint8_t *code) const
void compute_codes(const float *x, uint8_t *codes, size_t n) const
same as compute_code for several vectors
void compute_distance_table(const float *x, float *dis_table) const
void search(const float *x, size_t nx, const uint8_t *codes, const size_t ncodes, float_maxheap_array_t *res, bool init_finalize_heap=true) const
size_t code_size
byte per indexed vector
size_t ksub
number of centroids for each subquantizer
void search_ip(const float *x, size_t nx, const uint8_t *codes, const size_t ncodes, float_minheap_array_t *res, bool init_finalize_heap=true) const
void compute_code(const float *x, uint8_t *code) const
Quantize one vector with the product quantizer.
the centroids are already initialized
ClusteringParameters cp
parameters used during clustering
size_t M
number of subquantizers
float * get_centroids(size_t m, size_t i)
return the centroids associated with subvector m
size_t d
size of the input vectors
bool verbose
verbose during training?
std::vector< float > centroids
Centroid table, size M * ksub * dsub.
train_type_t
initialization