Faiss
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends
L2Select.cu
1 /**
2  * Copyright (c) 2015-present, Facebook, Inc.
3  * All rights reserved.
4  *
5  * This source code is licensed under the BSD+Patents license found in the
6  * LICENSE file in the root directory of this source tree.
7  */
8 
9 
10 #include "L2Select.cuh"
11 #include "../../FaissAssert.h"
12 
13 #include "../utils/DeviceUtils.h"
14 #include "../utils/MathOperators.cuh"
15 #include "../utils/Pair.cuh"
16 #include "../utils/Reductions.cuh"
17 #include "../utils/Select.cuh"
18 #include "../utils/Tensor.cuh"
19 #include "../utils/StaticUtils.h"
20 
21 namespace faiss { namespace gpu {
22 
23 // L2 + select kernel for k == 1, implements re-use of ||c||^2
24 template <typename T, int kRowsPerBlock, int kBlockSize>
25 __global__ void l2SelectMin1(Tensor<T, 2, true> productDistances,
26  Tensor<T, 1, true> centroidDistances,
27  Tensor<T, 2, true> outDistances,
28  Tensor<int, 2, true> outIndices) {
29  // Each block handles kRowsPerBlock rows of the distances (results)
30  Pair<T, int> threadMin[kRowsPerBlock];
31  __shared__ Pair<T, int> blockMin[kRowsPerBlock * (kBlockSize / kWarpSize)];
32 
33  T distance[kRowsPerBlock];
34 
35 #pragma unroll
36  for (int i = 0; i < kRowsPerBlock; ++i) {
37  threadMin[i].k = Limits<T>::getMax();
38  threadMin[i].v = -1;
39  }
40 
41  // blockIdx.x: which chunk of rows we are responsible for updating
42  int rowStart = blockIdx.x * kRowsPerBlock;
43 
44  // FIXME: if we have exact multiples, don't need this
45  bool endRow = (blockIdx.x == gridDim.x - 1);
46 
47  if (endRow) {
48  if (productDistances.getSize(0) % kRowsPerBlock == 0) {
49  endRow = false;
50  }
51  }
52 
53  if (endRow) {
54  for (int row = rowStart; row < productDistances.getSize(0); ++row) {
55  for (int col = threadIdx.x; col < productDistances.getSize(1);
56  col += blockDim.x) {
57  distance[0] = Math<T>::add(centroidDistances[col],
58  productDistances[row][col]);
59 
60  if (Math<T>::lt(distance[0], threadMin[0].k)) {
61  threadMin[0].k = distance[0];
62  threadMin[0].v = col;
63  }
64  }
65 
66  // Reduce within the block
67  threadMin[0] =
68  blockReduceAll<Pair<T, int>, Min<Pair<T, int> >, false, false>(
69  threadMin[0], Min<Pair<T, int> >(), blockMin);
70 
71  if (threadIdx.x == 0) {
72  outDistances[row][0] = threadMin[0].k;
73  outIndices[row][0] = threadMin[0].v;
74  }
75 
76  // so we can use the shared memory again
77  __syncthreads();
78 
79  threadMin[0].k = Limits<T>::getMax();
80  threadMin[0].v = -1;
81  }
82  } else {
83  for (int col = threadIdx.x; col < productDistances.getSize(1);
84  col += blockDim.x) {
85  T centroidDistance = centroidDistances[col];
86 
87 #pragma unroll
88  for (int row = 0; row < kRowsPerBlock; ++row) {
89  distance[row] = productDistances[rowStart + row][col];
90  }
91 
92 #pragma unroll
93  for (int row = 0; row < kRowsPerBlock; ++row) {
94  distance[row] = Math<T>::add(distance[row], centroidDistance);
95  }
96 
97 #pragma unroll
98  for (int row = 0; row < kRowsPerBlock; ++row) {
99  if (Math<T>::lt(distance[row], threadMin[row].k)) {
100  threadMin[row].k = distance[row];
101  threadMin[row].v = col;
102  }
103  }
104  }
105 
106  // Reduce within the block
107  blockReduceAll<kRowsPerBlock, Pair<T, int>, Min<Pair<T, int> >, false, false>(
108  threadMin, Min<Pair<T, int> >(), blockMin);
109 
110  if (threadIdx.x == 0) {
111 #pragma unroll
112  for (int row = 0; row < kRowsPerBlock; ++row) {
113  outDistances[rowStart + row][0] = threadMin[row].k;
114  outIndices[rowStart + row][0] = threadMin[row].v;
115  }
116  }
117  }
118 }
119 
120 // L2 + select kernel for k > 1, no re-use of ||c||^2
121 template <typename T, int NumWarpQ, int NumThreadQ, int ThreadsPerBlock>
122 __global__ void l2SelectMinK(Tensor<T, 2, true> productDistances,
123  Tensor<T, 1, true> centroidDistances,
124  Tensor<T, 2, true> outDistances,
125  Tensor<int, 2, true> outIndices,
126  int k, T initK) {
127  // Each block handles a single row of the distances (results)
128  constexpr int kNumWarps = ThreadsPerBlock / kWarpSize;
129 
130  __shared__ T smemK[kNumWarps * NumWarpQ];
131  __shared__ int smemV[kNumWarps * NumWarpQ];
132 
133  BlockSelect<T, int, false, Comparator<T>,
134  NumWarpQ, NumThreadQ, ThreadsPerBlock>
135  heap(initK, -1, smemK, smemV, k);
136 
137  int row = blockIdx.x;
138 
139  // Whole warps must participate in the selection
140  int limit = utils::roundDown(productDistances.getSize(1), kWarpSize);
141  int i = threadIdx.x;
142 
143  for (; i < limit; i += blockDim.x) {
144  T v = Math<T>::add(centroidDistances[i],
145  productDistances[row][i]);
146  heap.add(v, i);
147  }
148 
149  if (i < productDistances.getSize(1)) {
150  T v = Math<T>::add(centroidDistances[i],
151  productDistances[row][i]);
152  heap.addThreadQ(v, i);
153  }
154 
155  heap.reduce();
156  for (int i = threadIdx.x; i < k; i += blockDim.x) {
157  outDistances[row][i] = smemK[i];
158  outIndices[row][i] = smemV[i];
159  }
160 }
161 
162 // FIXME: no TVec specialization
163 template <typename T>
164 void runL2SelectMin(Tensor<T, 2, true>& productDistances,
165  Tensor<T, 1, true>& centroidDistances,
166  Tensor<T, 2, true>& outDistances,
167  Tensor<int, 2, true>& outIndices,
168  int k,
169  cudaStream_t stream) {
170  FAISS_ASSERT(productDistances.getSize(0) == outDistances.getSize(0));
171  FAISS_ASSERT(productDistances.getSize(0) == outIndices.getSize(0));
172  FAISS_ASSERT(centroidDistances.getSize(0) == productDistances.getSize(1));
173  FAISS_ASSERT(outDistances.getSize(1) == k);
174  FAISS_ASSERT(outIndices.getSize(1) == k);
175  FAISS_ASSERT(k <= 1024);
176 
177  if (k == 1) {
178  constexpr int kThreadsPerBlock = 256;
179  constexpr int kRowsPerBlock = 8;
180 
181  auto block = dim3(kThreadsPerBlock);
182  auto grid = dim3(utils::divUp(outDistances.getSize(0), kRowsPerBlock));
183 
184  l2SelectMin1<T, kRowsPerBlock, kThreadsPerBlock>
185  <<<grid, block, 0, stream>>>(productDistances, centroidDistances,
186  outDistances, outIndices);
187  } else {
188  constexpr int kThreadsPerBlock = 128;
189 
190  auto block = dim3(kThreadsPerBlock);
191  auto grid = dim3(outDistances.getSize(0));
192 
193 #define RUN_L2_SELECT(NUM_WARP_Q, NUM_THREAD_Q) \
194  do { \
195  l2SelectMinK<T, NUM_WARP_Q, NUM_THREAD_Q, kThreadsPerBlock> \
196  <<<grid, block, 0, stream>>>(productDistances, centroidDistances, \
197  outDistances, outIndices, \
198  k, Limits<T>::getMax()); \
199  } while (0)
200 
201  if (k <= 32) {
202  RUN_L2_SELECT(32, 2);
203  } else if (k <= 64) {
204  RUN_L2_SELECT(64, 3);
205  } else if (k <= 128) {
206  RUN_L2_SELECT(128, 3);
207  } else if (k <= 256) {
208  RUN_L2_SELECT(256, 4);
209  } else if (k <= 512) {
210  RUN_L2_SELECT(512, 8);
211  } else if (k <= 1024) {
212  RUN_L2_SELECT(1024, 8);
213  } else {
214  FAISS_ASSERT(false);
215  }
216  }
217 
218  CUDA_TEST_ERROR();
219 }
220 
221 void runL2SelectMin(Tensor<float, 2, true>& productDistances,
222  Tensor<float, 1, true>& centroidDistances,
223  Tensor<float, 2, true>& outDistances,
224  Tensor<int, 2, true>& outIndices,
225  int k,
226  cudaStream_t stream) {
227  runL2SelectMin<float>(productDistances,
228  centroidDistances,
229  outDistances,
230  outIndices,
231  k,
232  stream);
233 }
234 
235 #ifdef FAISS_USE_FLOAT16
236 void runL2SelectMin(Tensor<half, 2, true>& productDistances,
237  Tensor<half, 1, true>& centroidDistances,
238  Tensor<half, 2, true>& outDistances,
239  Tensor<int, 2, true>& outIndices,
240  int k,
241  cudaStream_t stream) {
242  runL2SelectMin<half>(productDistances,
243  centroidDistances,
244  outDistances,
245  outIndices,
246  k,
247  stream);
248 }
249 #endif
250 
251 } } // namespace