18 #include <faiss/IndexPQ.h>
19 #include <faiss/IndexIVFFlat.h>
20 #include <faiss/IndexFlat.h>
21 #include <faiss/index_io.h>
26 gettimeofday (&tv,
nullptr);
27 return tv.tv_sec + tv.tv_usec * 1e-6;
33 double t0 = elapsed();
39 size_t nb = 1000 * 1000;
43 size_t nt = 100 * 1000;
62 size_t nbits_subq = int (log2 (nb+1) / 2);
63 size_t ncentroids = 1 << (nhash * nbits_subq);
67 printf (
"IMI (%ld,%ld): %ld virtual centroids (target: %ld base vectors)",
68 nhash, nbits_subq, ncentroids, nb);
75 index.quantizer_trains_alone =
true;
83 printf (
"[%.3f s] Generating %ld vectors in %dD for training\n",
84 elapsed() - t0, nt, d);
86 std::vector <float> trainvecs (nt * d);
87 for (
size_t i = 0; i < nt * d; i++) {
88 trainvecs[i] = drand48();
91 printf (
"[%.3f s] Training the index\n", elapsed() - t0);
93 index.train (nt, trainvecs.data());
97 std::vector<float> queries;
100 printf (
"[%.3f s] Building a dataset of %ld vectors to index\n",
103 std::vector <float> database (nb * d);
104 for (
size_t i = 0; i < nb * d; i++) {
105 database[i] = drand48();
108 printf (
"[%.3f s] Adding the vectors to the index\n", elapsed() - t0);
110 index.add (nb, database.data());
117 queries.resize (nq * d);
118 for (
int i = i0; i < i1; i++) {
119 for (
int j = 0; j < d; j++) {
120 queries [(i - i0) * d + j] = database [i * d + j];
127 printf (
"[%.3f s] Searching the %d nearest neighbors "
128 "of %ld vectors in the index\n",
129 elapsed() - t0, k, nq);
131 std::vector<faiss::Index::idx_t> nns (k * nq);
132 std::vector<float> dis (k * nq);
134 index.search (nq, queries.data(), k, dis.data(), nns.data());
136 printf (
"[%.3f s] Query results (vector ids, then distances):\n",
139 for (
int i = 0; i < nq; i++) {
140 printf (
"query %2d: ", i);
141 for (
int j = 0; j < k; j++) {
142 printf (
"%7ld ", nns[j + i * k]);
145 for (
int j = 0; j < k; j++) {
146 printf (
"%7g ", dis[j + i * k]);
MetricType
Some algorithms support both an inner product version and a L2 search version.