Faiss
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends
/data/users/matthijs/github_faiss/faiss/ProductQuantizer.h
1 
2 /**
3  * Copyright (c) 2015-present, Facebook, Inc.
4  * All rights reserved.
5  *
6  * This source code is licensed under the CC-by-NC license found in the
7  * LICENSE file in the root directory of this source tree.
8  */
9 
10 // Copyright 2004-present Facebook. All Rights Reserved.
11 // -*- c++ -*-
12 
13 #ifndef FAISS_PRODUCT_QUANTIZER_H
14 #define FAISS_PRODUCT_QUANTIZER_H
15 
16 #include <stdint.h>
17 
18 #include <vector>
19 
20 #include "Clustering.h"
21 #include "Heap.h"
22 
23 namespace faiss {
24 
25 /** Product Quantizer. Implemented only for METRIC_L2 */
27 
28  size_t d; ///< size of the input vectors
29  size_t M; ///< number of subquantizers
30  size_t nbits; ///< number of bits per quantization index
31 
32  // values derived from the above
33  size_t dsub; ///< dimensionality of each subvector
34  size_t byte_per_idx; ///< nb bytes per code component (1 or 2)
35  size_t code_size; ///< byte per indexed vector
36  size_t ksub; ///< number of centroids for each subquantizer
37  bool verbose; ///< verbose during training?
38 
39 
40  /// initialization
41  enum train_type_t {
42  Train_default,
43  Train_hot_start, ///< the centroids are already initialized
44  Train_shared, ///< share dictionary accross PQ segments
45  Train_hypercube, ///< intialize centroids with nbits-D hypercube
46  Train_hypercube_pca, ///< intialize centroids with nbits-D hypercube
47  };
48  train_type_t train_type;
49 
50  ClusteringParameters cp; ///< parameters used during clustering
51 
52  /// Centroid table, size M * ksub * dsub
53  std::vector<float> centroids;
54 
55  /// return the centroids associated with subvector m
56  float * get_centroids (size_t m, size_t i) {
57  return &centroids [(m * ksub + i) * dsub];
58  }
59  const float * get_centroids (size_t m, size_t i) const {
60  return &centroids [(m * ksub + i) * dsub];
61  }
62 
63  // Train the product quantizer on a set of points. A clustering
64  // can be set on input to define non-default clustering parameters
65  void train (int n, const float *x);
66 
67  ProductQuantizer(size_t d, /* dimensionality of the input vectors */
68  size_t M, /* number of subquantizers */
69  size_t nbits); /* number of bit per subvector index */
70 
71  ProductQuantizer ();
72 
73  /// compute derived values when d, M and nbits have been set
74  void set_derived_values ();
75 
76  /// Define the centroids for subquantizer m
77  void set_params (const float * centroids, int m);
78 
79  /// Quantize one vector with the product quantizer
80  void compute_code (const float * x, uint8_t * code) const ;
81 
82  /// same as compute_code for several vectors
83  void compute_codes (const float * x,
84  uint8_t * codes,
85  size_t n) const ;
86 
87  /// decode a vector from a given code (or n vectors if third argument)
88  void decode (const uint8_t *code, float *x) const;
89  void decode (const uint8_t *code, float *x, size_t n) const;
90 
91  /// If we happen to have the distance tables precomputed, this is
92  /// more efficient to compute the codes.
93  void compute_code_from_distance_table (const float *tab,
94  uint8_t *code) const;
95 
96 
97  /** Compute distance table for one vector.
98  *
99  * The distance table for x = [x_0 x_1 .. x_(M-1)] is a M * ksub
100  * matrix that contains
101  *
102  * dis_table (m, j) = || x_m - c_(m, j)||^2
103  * for m = 0..M-1 and j = 0 .. ksub - 1
104  *
105  * where c_(m, j) is the centroid no j of sub-quantizer m.
106  *
107  * @param x input vector size d
108  * @param dis_table output table, size M * ksub
109  */
110  void compute_distance_table (const float * x,
111  float * dis_table) const;
112 
113  void compute_inner_prod_table (const float * x,
114  float * dis_table) const;
115 
116 
117  /** compute distance table for several vectors
118  * @param nx nb of input vectors
119  * @param x input vector size nx * d
120  * @param dis_table output table, size nx * M * ksub
121  */
122  void compute_distance_tables (size_t nx,
123  const float * x,
124  float * dis_tables) const;
125 
126  void compute_inner_prod_tables (size_t nx,
127  const float * x,
128  float * dis_tables) const;
129 
130 
131  /** perform a search (L2 distance)
132  * @param x query vectors, size nx * d
133  * @param nx nb of queries
134  * @param codes database codes, size ncodes * byte_per_idx
135  * @param ncodes nb of nb vectors
136  * @param res heap array to store results (nh == nx)
137  * @param init_finalize_heap initialize heap (input) and sort (output)?
138  */
139  void search (const float * x,
140  size_t nx,
141  const uint8_t * codes,
142  const size_t ncodes,
143  float_maxheap_array_t *res,
144  bool init_finalize_heap = true) const;
145 
146  /** same as search, but with inner product similarity */
147  void search_ip (const float * x,
148  size_t nx,
149  const uint8_t * codes,
150  const size_t ncodes,
151  float_minheap_array_t *res,
152  bool init_finalize_heap = true) const;
153 
154 
155  /// Symmetric Distance Table
156  std::vector<float> sdc_table;
157 
158  // intitialize the SDC table from the centroids
159  void compute_sdc_table ();
160 
161  void search_sdc (const uint8_t * qcodes,
162  size_t nq,
163  const uint8_t * bcodes,
164  const size_t ncodes,
165  float_maxheap_array_t * res,
166  bool init_finalize_heap = true) const;
167 
168 };
169 
170 
171 
172 } // namespace faiss
173 
174 
175 #endif
void set_params(const float *centroids, int m)
Define the centroids for subquantizer m.
intialize centroids with nbits-D hypercube
size_t nbits
number of bits per quantization index
void decode(const uint8_t *code, float *x) const
decode a vector from a given code (or n vectors if third argument)
size_t byte_per_idx
nb bytes per code component (1 or 2)
intialize centroids with nbits-D hypercube
void set_derived_values()
compute derived values when d, M and nbits have been set
std::vector< float > sdc_table
Symmetric Distance Table.
share dictionary accross PQ segments
size_t dsub
dimensionality of each subvector
void compute_distance_tables(size_t nx, const float *x, float *dis_tables) const
void compute_code_from_distance_table(const float *tab, uint8_t *code) const
void compute_codes(const float *x, uint8_t *codes, size_t n) const
same as compute_code for several vectors
void compute_distance_table(const float *x, float *dis_table) const
void search(const float *x, size_t nx, const uint8_t *codes, const size_t ncodes, float_maxheap_array_t *res, bool init_finalize_heap=true) const
size_t code_size
byte per indexed vector
size_t ksub
number of centroids for each subquantizer
void search_ip(const float *x, size_t nx, const uint8_t *codes, const size_t ncodes, float_minheap_array_t *res, bool init_finalize_heap=true) const
void compute_code(const float *x, uint8_t *code) const
Quantize one vector with the product quantizer.
the centroids are already initialized
ClusteringParameters cp
parameters used during clustering
size_t M
number of subquantizers
float * get_centroids(size_t m, size_t i)
return the centroids associated with subvector m
size_t d
size of the input vectors
bool verbose
verbose during training?
std::vector< float > centroids
Centroid table, size M * ksub * dsub.
train_type_t
initialization