20 #include "FaissAssert.h"
21 #include "IndexFlat.h"
22 #include "AuxIndexStructures.h"
31 IndexIVF::IndexIVF (
Index * quantizer,
size_t d,
size_t nlist,
36 quantizer (quantizer),
37 quantizer_trains_alone (false),
40 maintain_direct_map (false)
42 FAISS_THROW_IF_NOT (d == quantizer->
d);
57 IndexIVF::IndexIVF ():
58 nlist (0), nprobe (1), quantizer (nullptr),
59 quantizer_trains_alone (false), own_fields (false),
60 maintain_direct_map (false)
75 if (new_maintain_direct_map) {
76 direct_map.resize (
ntotal, -1);
77 for (
size_t key = 0; key <
nlist; key++) {
78 const std::vector<long> & idlist =
ids[key];
80 for (
long ofs = 0; ofs < idlist.size(); ofs++) {
81 FAISS_THROW_IF_NOT_MSG (
82 0 <= idlist [ofs] && idlist[ofs] <
ntotal,
83 "direct map supported only for seuquential ids");
84 direct_map [idlist [ofs]] = key << 32 | ofs;
95 float *distances,
idx_t *labels)
const
97 long * idx =
new long [n *
nprobe];
99 float * coarse_dis =
new float [n *
nprobe];
105 distances, labels,
false);
114 for (
size_t i = 0; i <
ids.size(); i++) {
124 "direct map remove not implemented");
126 #pragma omp parallel for reduction(+: nremove)
127 for (
long i = 0; i <
nlist; i++) {
128 std::vector<idx_t> & idsi =
ids[i];
129 uint8_t * codesi = codes[i].data();
131 long l = idsi.size(), j = 0;
133 if (sel.is_member (idsi[j])) {
137 codesi + l * code_size, code_size);
142 if (l < idsi.size()) {
143 nremove += idsi.size() - l;
159 printf (
"IVF quantizer does not need training.\n");
162 printf (
"IVF quantizer trains alone...\n");
165 "nlist not consistent with quantizer size");
168 printf (
"Training IVF quantizer on %ld vectors in %dD\n",
178 printf (
"Training IVF residual\n");
186 printf(
"IndexIVF: no residual training\n");
194 std::vector<int> hist (
nlist);
195 for (
int i = 0; i <
nlist; i++) {
196 hist[i] =
ids[i].size();
203 std::vector<int> sizes(40);
204 for (
int i = 0; i <
nlist; i++) {
205 for (
int j = 0; j < sizes.size(); j++) {
206 if ((
ids[i].size() >> j) == 0) {
212 for (
int i = 0; i < sizes.size(); i++) {
214 printf (
"list size in < %d: %d instances\n",
224 FAISS_THROW_IF_NOT (other.
d ==
d);
228 "direct map copy not implemented");
229 FAISS_THROW_IF_NOT_MSG (
typeid (*
this) ==
typeid (other),
230 "can only merge indexes of the same type");
231 for (
long i = 0; i <
nlist; i++) {
232 std::vector<idx_t> & src = other.
ids[i];
233 std::vector<idx_t> & dest =
ids[i];
234 for (
long j = 0; j < src.size(); j++)
235 dest.push_back (src[j] + add_id);
237 codes[i].insert (codes[i].end(),
238 other.codes[i].begin(),
239 other.codes[i].end());
240 other.codes[i].clear();
249 long a1,
long a2)
const
253 FAISS_THROW_IF_NOT_MSG (subset_type == 0 || subset_type == 2,
254 "this subset type is not implemented");
260 for (
long list_no = 0; list_no <
nlist; list_no++) {
261 const std::vector<idx_t> & ids_in =
ids[list_no];
262 std::vector<idx_t> & ids_out = other.
ids[list_no];
263 const std::vector<uint8_t> & codes_in = codes[list_no];
264 std::vector<uint8_t> & codes_out = other.codes[list_no];
265 size_t n = ids_in.size();
267 if (subset_type == 0) {
268 for (
long i = 0; i < n; i++) {
269 idx_t id = ids_in[i];
270 if (a1 <=
id &&
id < a2) {
271 ids_out.push_back (
id);
272 codes_out.insert (codes_out.end(),
274 codes_in.begin() + (i + 1) * code_size);
278 }
else if (subset_type == 2) {
280 size_t next_accu_n = accu_n + n;
281 size_t next_accu_a1 = next_accu_n * a1 /
ntotal;
282 size_t i1 = next_accu_a1 - accu_a1;
283 accu_a1 = next_accu_a1;
284 size_t next_accu_a2 = next_accu_n * a2 /
ntotal;
285 size_t i2 = next_accu_a2 - accu_a2;
286 accu_a2 = next_accu_a2;
287 ids_out.insert(ids_out.end(),
289 ids_in.begin() + i2);
290 codes_out.insert (codes_out.end(),
297 FAISS_ASSERT(accu_n ==
ntotal);
302 IndexIVF::~IndexIVF()
313 IndexIVFFlat::IndexIVFFlat (Index * quantizer,
315 IndexIVF (quantizer, d, nlist, metric)
331 const long *precomputed_idx)
336 "cannot have direct map and add with ids");
340 if (precomputed_idx) {
341 idx = precomputed_idx;
343 long * idx0 =
new long [n];
349 for (
size_t i = 0; i < n; i++) {
350 long id = xids ? xids[i] :
ntotal + i;
351 long list_no = idx [i];
354 assert (list_no <
nlist);
356 ids[list_no].push_back (
id);
357 const float *xi = x + i *
d;
359 size_t ofs = codes[list_no].size();
361 memcpy(codes[list_no].data() + ofs,
365 direct_map.push_back (list_no << 32 | (
ids[list_no].size() - 1));
369 printf(
"IndexIVFFlat::add_core: added %ld / %ld vectors\n",
375 void IndexIVFFlatStats::reset()
377 memset ((
void*)
this, 0,
sizeof (*
this));
381 IndexIVFFlatStats indexIVFFlat_stats;
385 void search_knn_inner_product (
const IndexIVFFlat & ivf,
389 float_minheap_array_t * res,
393 const size_t k = res->k;
394 size_t nlistv = 0, ndis = 0;
397 #pragma omp parallel for reduction(+: nlistv, ndis)
398 for (
size_t i = 0; i < nx; i++) {
399 const float * xi = x + i * d;
400 const long * keysi = keys + i * ivf.nprobe;
401 float * __restrict simi = res->get_val (i);
402 long * __restrict idxi = res->get_ids (i);
403 minheap_heapify (k, simi, idxi);
405 for (
size_t ik = 0; ik < ivf.nprobe; ik++) {
406 long key = keysi[ik];
411 FAISS_THROW_IF_NOT_FMT (
412 key < (
long) ivf.nlist,
413 "Invalid key=%ld at ik=%ld nlist=%ld\n",
417 const size_t list_size = ivf.ids[key].size();
418 const float * list_vecs = (
const float*)(ivf.codes[key].data());
420 for (
size_t j = 0; j < list_size; j++) {
421 const float * yj = list_vecs + d * j;
422 float ip = fvec_inner_product (xi, yj, d);
424 minheap_pop (k, simi, idxi);
425 long id = store_pairs ? (key << 32 | j) : ivf.ids[key][j];
426 minheap_push (k, simi, idxi, ip,
id);
431 minheap_reorder (k, simi, idxi);
433 indexIVFFlat_stats.nq += nx;
434 indexIVFFlat_stats.nlist += nlistv;
435 indexIVFFlat_stats.ndis += ndis;
439 void search_knn_L2sqr (
const IndexIVFFlat &ivf,
443 float_maxheap_array_t * res,
446 const size_t k = res->k;
447 size_t nlistv = 0, ndis = 0;
449 #pragma omp parallel for reduction(+: nlistv, ndis)
450 for (
size_t i = 0; i < nx; i++) {
451 const float * xi = x + i * d;
452 const long * keysi = keys + i * ivf.nprobe;
453 float * __restrict disi = res->get_val (i);
454 long * __restrict idxi = res->get_ids (i);
455 maxheap_heapify (k, disi, idxi);
457 for (
size_t ik = 0; ik < ivf.nprobe; ik++) {
458 long key = keysi[ik];
463 FAISS_THROW_IF_NOT_FMT (
464 key < (
long) ivf.nlist,
465 "Invalid key=%ld at ik=%ld nlist=%ld\n",
469 const size_t list_size = ivf.ids[key].size();
470 const float * list_vecs = (
const float*)(ivf.codes[key].data());
472 for (
size_t j = 0; j < list_size; j++) {
473 const float * yj = list_vecs + d * j;
475 if (disij < disi[0]) {
476 maxheap_pop (k, disi, idxi);
477 long id = store_pairs ? (key << 32 | j) : ivf.ids[key][j];
478 maxheap_push (k, disi, idxi, disij,
id);
483 maxheap_reorder (k, disi, idxi);
485 indexIVFFlat_stats.nq += nx;
486 indexIVFFlat_stats.nlist += nlistv;
487 indexIVFFlat_stats.ndis += ndis;
496 float *distances,
idx_t *labels,
497 bool store_pairs)
const
501 size_t(n), size_t(k), labels, distances};
502 search_knn_inner_product (*
this, n, x, idx, &res, store_pairs);
506 size_t(n), size_t(k), labels, distances};
507 search_knn_L2sqr (*
this, n, x, idx, &res, store_pairs);
523 for (
size_t i = 0; i < nx; i++) {
524 const float * xi = x + i *
d;
525 const long * keysi = keys + i *
nprobe;
530 for (
size_t ik = 0; ik <
nprobe; ik++) {
531 long key = keysi[ik];
532 if (key < 0 || key >= (
long)
nlist) {
533 fprintf (stderr,
"Invalid key=%ld at ik=%ld nlist=%ld\n",
538 const size_t list_size =
ids[key].size();
539 const float * list_vecs = (
const float *)(codes[key].data());
541 for (
size_t j = 0; j < list_size; j++) {
542 const float * yj = list_vecs + d * j;
545 if (disij < radius) {
546 qres.add (disij,
ids[key][j]);
549 float disij = fvec_inner_product(xi, yj, d);
550 if (disij > radius) {
551 qres.add (disij,
ids[key][j]);
566 std::vector<idx_t>
assign (n);
569 for (
int i = 0; i < n; i++) {
570 idx_t id = new_ids[i];
571 FAISS_THROW_IF_NOT_MSG (0 <=
id &&
id <
ntotal,
572 "id to update out of range");
574 long dm = direct_map[id];
575 long ofs = dm & 0xffffffff;
577 size_t l =
ids[il].size();
579 long id2 =
ids[il].back();
581 direct_map[id2] = (il << 32) | ofs;
582 float * vecs = (
float*)codes[il].data();
583 memcpy (vecs + ofs * d,
592 size_t l =
ids[il].size();
593 long dm = (il << 32) | l;
595 ids[il].push_back (
id);
597 float * vecs = (
float*)codes[il].data();
598 memcpy (vecs + l * d,
612 FAISS_THROW_IF_NOT_MSG (direct_map.size() ==
ntotal,
613 "direct map is not initialized");
614 int list_no = direct_map[key] >> 32;
615 int ofs = direct_map[key] & 0xffffffff;
616 memcpy (recons, &codes[list_no][ofs *
code_size], d *
sizeof(recons[0]));
virtual void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs) const =0
int niter
clustering iterations
result structure for a single query
float fvec_L2sqr(const float *x, const float *y, size_t d)
Squared L2 distance between two vectors.
double imbalance_factor() const
1= perfectly balanced, >1: imbalanced
virtual void reset()=0
removes all elements from the database.
virtual void copy_subset_to(IndexIVF &other, int subset_type, long a1, long a2) const
size_t nprobe
number of probes at query time
virtual void train(idx_t, const float *)
void reconstruct(idx_t key, float *recons) const override
void assign(idx_t n, const float *x, idx_t *labels, idx_t k=1)
bool quantizer_trains_alone
just pass over the trainset to quantizer
void range_search(idx_t n, const float *x, float radius, RangeSearchResult *result) const override
virtual void add_with_ids(idx_t n, const float *x, const long *xids)
virtual void train_residual(idx_t n, const float *x)
double imbalance_factor(int n, int k, const long *assign)
a balanced assignment has a IF of 1
std::vector< std::vector< long > > ids
Inverted lists for indexes.
Index * quantizer
quantizer that maps vectors to inverted lists
void train(idx_t n, const float *x) override
Trains the quantizer and calls train_residual to train sub-quantizers.
ClusteringParameters cp
to override default clustering params
void add_with_ids(idx_t n, const float *x, const long *xids) override
implemented for all IndexIVF* classes
bool own_fields
whether object owns the quantizer
long idx_t
all indices are this type
idx_t ntotal
total nb of indexed vectors
bool verbose
verbosity level
void reset() override
removes all elements from the database.
QueryResult & new_result(idx_t qno)
begin a new result
void update_vectors(int nv, idx_t *idx, const float *v)
virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels) const =0
the entries in the buffers are split per query
void make_direct_map(bool new_maintain_direct_map=true)
MetricType metric_type
type of metric this index uses for search
void print_stats() const
display some stats about the inverted lists
size_t nlist
number of possible key values
void add(idx_t n, const float *x) override
Quantizes x and calls add_with_key.
virtual void train(idx_t n, const float *x, faiss::Index &index)
Index is used during the assignment stage.
bool is_trained
set if the Index does not require training, or if training is done already
long remove_ids(const IDSelector &sel) override
Dataset manipulation functions.
bool maintain_direct_map
map for direct access to the elements. Enables reconstruct().
bool spherical
do we want normalized centroids?
virtual void search(idx_t n, const float *x, idx_t k, float *distances, idx_t *labels) const override
void search_preassigned(idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs) const override
virtual void merge_from(IndexIVF &other, idx_t add_id)
size_t code_size
code size per vector in bytes
MetricType
Some algorithms support both an inner product vetsion and a L2 search version.
virtual void add_core(idx_t n, const float *x, const long *xids, const long *precomputed_idx)
same as add_with_ids, with precomputed coarse quantizer