19 #include <immintrin.h>
23 #include <sys/types.h>
32 #include "AuxIndexStructures.h"
33 #include "FaissAssert.h"
46 int sgemm_ (
const char *transa,
const char *transb, FINTEGER *m, FINTEGER *
47 n, FINTEGER *k,
const float *alpha,
const float *a,
48 FINTEGER *lda,
const float *b, FINTEGER *
49 ldb,
float *beta,
float *c, FINTEGER *ldc);
53 int sgeqrf_ (FINTEGER *m, FINTEGER *n,
float *a, FINTEGER *lda,
54 float *tau,
float *work, FINTEGER *lwork, FINTEGER *info);
56 int sorgqr_(FINTEGER *m, FINTEGER *n, FINTEGER *k,
float *a,
57 FINTEGER *lda,
float *tau,
float *work,
58 FINTEGER *lwork, FINTEGER *info);
72 gettimeofday (&tv,
nullptr);
73 return tv.tv_sec * 1e3 + tv.tv_usec * 1e-3;
83 snprintf (fname, 256,
"/proc/%d/status", pid);
84 FILE * f = fopen (fname,
"r");
85 FAISS_THROW_IF_NOT_MSG (f,
"cannot open proc status file");
89 if (!fgets (buf, 256, f))
break;
90 if (sscanf (buf,
"VmRSS: %ld kB", &sz) == 1)
break;
100 fprintf(stderr,
"WARN: get_mem_usage_kb not implemented on the mac\n");
138 random_r (&rand_data, &a);
145 random_r (&rand_data, &a);
146 random_r (&rand_data, &b);
147 return long(a) | long(b) << 31;
153 memset (&rand_data, 0,
sizeof (rand_data));
154 initstate_r (seed, rand_state,
sizeof (rand_state), &rand_data);
160 memcpy (rand_state, other.rand_state,
sizeof(rand_state));
161 rand_data = other.rand_data;
162 setstate_r (rand_state, &rand_data);
169 int rand_r(
unsigned *seed);
180 rand_state = other.rand_state;
188 int lowbits = rand_r(&rand_state) >> 15;
189 return rand_r(&rand_state) ^ lowbits;
194 return long(random()) | long(random()) << 31;
209 return rand_int() / float(1L << 31);
212 double RandomGenerator::rand_double ()
226 void float_rand (
float * x,
size_t n,
long seed)
229 const size_t nblock = n < 1024 ? 1 : 1024;
231 RandomGenerator rng0 (seed);
232 int a0 = rng0.rand_int (), b0 = rng0.rand_int ();
234 #pragma omp parallel for
235 for (
size_t j = 0; j < nblock; j++) {
237 RandomGenerator rng (a0 + j * b0);
239 const size_t istart = j * n / nblock;
240 const size_t iend = (j + 1) * n / nblock;
242 for (
size_t i = istart; i < iend; i++)
243 x[i] = rng.rand_float ();
248 void float_randn (
float * x,
size_t n,
long seed)
251 const size_t nblock = n < 1024 ? 1 : 1024;
253 RandomGenerator rng0 (seed);
254 int a0 = rng0.rand_int (), b0 = rng0.rand_int ();
256 #pragma omp parallel for
257 for (
size_t j = 0; j < nblock; j++) {
258 RandomGenerator rng (a0 + j * b0);
260 double a = 0, b = 0, s = 0;
263 const size_t istart = j * n / nblock;
264 const size_t iend = (j + 1) * n / nblock;
266 for (
size_t i = istart; i < iend; i++) {
270 a = 2.0 * rng.rand_double () - 1;
271 b = 2.0 * rng.rand_double () - 1;
274 x[i] = a * sqrt(-2.0 * log(s) / s);
277 x[i] = b * sqrt(-2.0 * log(s) / s);
285 void long_rand (
long * x,
size_t n,
long seed)
288 const size_t nblock = n < 1024 ? 1 : 1024;
290 RandomGenerator rng0 (seed);
291 int a0 = rng0.rand_int (), b0 = rng0.rand_int ();
293 #pragma omp parallel for
294 for (
size_t j = 0; j < nblock; j++) {
296 RandomGenerator rng (a0 + j * b0);
298 const size_t istart = j * n / nblock;
299 const size_t iend = (j + 1) * n / nblock;
300 for (
size_t i = istart; i < iend; i++)
301 x[i] = rng.rand_long ();
307 void rand_perm (
int *perm,
size_t n,
long seed)
309 for (
size_t i = 0; i < n; i++) perm[i] = i;
311 RandomGenerator rng (seed);
313 for (
size_t i = 0; i + 1 < n; i++) {
314 int i2 = i + rng.rand_int (n - i);
315 std::swap(perm[i], perm[i2]);
322 void byte_rand (uint8_t * x,
size_t n,
long seed)
325 const size_t nblock = n < 1024 ? 1 : 1024;
327 RandomGenerator rng0 (seed);
328 int a0 = rng0.rand_int (), b0 = rng0.rand_int ();
330 #pragma omp parallel for
331 for (
size_t j = 0; j < nblock; j++) {
333 RandomGenerator rng (a0 + j * b0);
335 const size_t istart = j * n / nblock;
336 const size_t iend = (j + 1) * n / nblock;
339 for (i = istart; i < iend; i++)
340 x[i] = rng.rand_long ();
346 void reflection (
const float * __restrict u,
347 float * __restrict x,
348 size_t n,
size_t d,
size_t nu)
351 for (i = 0; i < n; i++) {
352 const float * up = u;
353 for (l = 0; l < nu; l++) {
354 float ip1 = 0, ip2 = 0;
356 for (j = 0; j < d; j+=2) {
358 ip2 += up[j+1] * x[j+1];
360 float ip = 2 * (ip1 + ip2);
362 for (j = 0; j < d; j++)
372 void reflection_ref (
const float * u,
float * x,
size_t n,
size_t d,
size_t nu)
375 for (i = 0; i < n; i++) {
376 const float * up = u;
377 for (l = 0; l < nu; l++) {
380 for (j = 0; j < d; j++)
384 for (j = 0; j < d; j++)
422 float fvec_L2sqr_ref (
const float * x,
428 for (i = 0; i < d; i++) {
429 const float tmp = x[i] - y[i];
435 float fvec_inner_product_ref (
const float * x,
441 for (i = 0; i < d; i++)
446 float fvec_norm_L2sqr_ref (
const float * __restrict x,
451 for (i = 0; i < d; i++)
462 static inline __m128 masked_read (
int d,
const float *x)
464 assert (0 <= d && d < 4);
465 __attribute__((__aligned__(16))) float buf[4] = {0, 0, 0, 0};
474 return _mm_load_ps (buf);
485 __m128 msum1 = _mm_setzero_ps();
488 __m128 mx = _mm_loadu_ps (x); x += 4;
489 __m128 my = _mm_loadu_ps (y); y += 4;
490 const __m128 a_m_b1 = mx - my;
491 msum1 += a_m_b1 * a_m_b1;
497 __m128 mx = masked_read (d, x);
498 __m128 my = masked_read (d, y);
499 __m128 a_m_b1 = mx - my;
500 msum1 += a_m_b1 * a_m_b1;
503 msum1 = _mm_hadd_ps (msum1, msum1);
504 msum1 = _mm_hadd_ps (msum1, msum1);
505 return _mm_cvtss_f32 (msum1);
509 float fvec_inner_product (
const float * x,
514 __m128 msum1 = _mm_setzero_ps();
517 mx = _mm_loadu_ps (x); x += 4;
518 my = _mm_loadu_ps (y); y += 4;
519 msum1 = _mm_add_ps (msum1, _mm_mul_ps (mx, my));
524 mx = masked_read (d, x);
525 my = masked_read (d, y);
526 __m128 prod = _mm_mul_ps (mx, my);
528 msum1 = _mm_add_ps (msum1, prod);
530 msum1 = _mm_hadd_ps (msum1, msum1);
531 msum1 = _mm_hadd_ps (msum1, msum1);
532 return _mm_cvtss_f32 (msum1);
542 __m128 msum1 = _mm_setzero_ps();
545 mx = _mm_loadu_ps (x); x += 4;
546 msum1 = _mm_add_ps (msum1, _mm_mul_ps (mx, mx));
550 mx = masked_read (d, x);
551 msum1 = _mm_add_ps (msum1, _mm_mul_ps (mx, mx));
553 msum1 = _mm_hadd_ps (msum1, msum1);
554 msum1 = _mm_hadd_ps (msum1, msum1);
555 return _mm_cvtss_f32 (msum1);
572 static inline __m256 masked_read_8 (
int d,
const float *x)
574 assert (0 <= d && d < 8);
576 __m256 res = _mm256_setzero_ps ();
577 res = _mm256_insertf128_ps (res, masked_read (d, x), 0);
581 res = _mm256_insertf128_ps (res, _mm_loadu_ps (x), 0);
582 res = _mm256_insertf128_ps (res, masked_read (d - 4, x + 4), 1);
592 __m256 msum1 = _mm256_setzero_ps();
595 __m256 mx = _mm256_loadu_ps (x); x += 8;
596 __m256 my = _mm256_loadu_ps (y); y += 8;
597 const __m256 a_m_b1 = mx - my;
598 msum1 += a_m_b1 * a_m_b1;
604 __m256 mx = masked_read_8 (d, x);
605 __m256 my = masked_read_8 (d, y);
606 __m256 a_m_b1 = mx - my;
607 msum1 += a_m_b1 * a_m_b1;
610 __m128 msum2 = _mm256_extractf128_ps(msum1, 1);
611 msum2 += _mm256_extractf128_ps(msum1, 0);
613 msum2 = _mm_hadd_ps (msum2, msum2);
614 msum2 = _mm_hadd_ps (msum2, msum2);
615 return _mm_cvtss_f32 (msum2);
634 void fvec_inner_products_ny (
float * __restrict ip,
639 for (
size_t i = 0; i < ny; i++) {
640 ip[i] = fvec_inner_product (x, y, d);
649 void fvec_L2sqr_ny (
float * __restrict dis,
654 for (
size_t i = 0; i < ny; i++) {
664 void fvec_norms_L2 (
float * __restrict nr,
665 const float * __restrict x,
669 #pragma omp parallel for
670 for (
size_t i = 0; i < nx; i++) {
675 void fvec_norms_L2sqr (
float * __restrict nr,
676 const float * __restrict x,
679 #pragma omp parallel for
680 for (
size_t i = 0; i < nx; i++)
686 void fvec_renorm_L2 (
size_t d,
size_t nx,
float * __restrict x)
688 #pragma omp parallel for
689 for (
size_t i = 0; i < nx; i++) {
690 float * __restrict xi = x + i * d;
696 const float inv_nr = 1.0 / sqrtf (nr);
697 for (j = 0; j < d; j++)
726 static void knn_inner_product_sse (
const float * x,
728 size_t d,
size_t nx,
size_t ny,
729 float_minheap_array_t * res)
733 #pragma omp parallel for
734 for (
size_t i = 0; i < nx; i++) {
735 const float * x_ = x + i * d;
736 const float * y_ = y;
738 float * __restrict simi = res->get_val(i);
739 long * __restrict idxi = res->get_ids (i);
741 minheap_heapify (k, simi, idxi);
743 for (
size_t j = 0; j < ny; j++) {
744 float ip = fvec_inner_product (x_, y_, d);
747 minheap_pop (k, simi, idxi);
748 minheap_push (k, simi, idxi, ip, j);
752 minheap_reorder (k, simi, idxi);
757 static void knn_L2sqr_sse (
760 size_t d,
size_t nx,
size_t ny,
761 float_maxheap_array_t * res)
765 #pragma omp parallel for
766 for (
size_t i = 0; i < nx; i++) {
767 const float * x_ = x + i * d;
768 const float * y_ = y;
770 float * __restrict simi = res->get_val(i);
771 long * __restrict idxi = res->get_ids (i);
773 maxheap_heapify (k, simi, idxi);
774 for (j = 0; j < ny; j++) {
777 if (disij < simi[0]) {
778 maxheap_pop (k, simi, idxi);
779 maxheap_push (k, simi, idxi, disij, j);
783 maxheap_reorder (k, simi, idxi);
790 static void knn_inner_product_blas (
793 size_t d,
size_t nx,
size_t ny,
794 float_minheap_array_t * res)
799 if (nx == 0 || ny == 0)
return;
802 const size_t bs_x = 4096, bs_y = 1024;
804 float *ip_block =
new float[bs_x * bs_y];
806 for (
size_t i0 = 0; i0 < nx; i0 += bs_x) {
807 size_t i1 = i0 + bs_x;
810 for (
size_t j0 = 0; j0 < ny; j0 += bs_y) {
811 size_t j1 = j0 + bs_y;
812 if (j1 > ny) j1 = ny;
815 float one = 1, zero = 0;
816 FINTEGER nyi = j1 - j0, nxi = i1 - i0, di = d;
817 sgemm_ (
"Transpose",
"Not transpose", &nyi, &nxi, &di, &one,
819 x + i0 * d, &di, &zero,
824 res->addn (j1 - j0, ip_block, j0, i0, i1 - i0);
833 template<
class DistanceCorrection>
834 static void knn_L2sqr_blas (
const float * x,
836 size_t d,
size_t nx,
size_t ny,
837 float_maxheap_array_t * res,
838 const DistanceCorrection &corr)
843 if (nx == 0 || ny == 0)
return;
848 const size_t bs_x = 4096, bs_y = 1024;
850 float *ip_block =
new float[bs_x * bs_y];
852 float *x_norms =
new float[nx];
853 fvec_norms_L2sqr (x_norms, x, d, nx);
855 float *y_norms =
new float[ny];
856 fvec_norms_L2sqr (y_norms, y, d, ny);
858 for (
size_t i0 = 0; i0 < nx; i0 += bs_x) {
859 size_t i1 = i0 + bs_x;
862 for (
size_t j0 = 0; j0 < ny; j0 += bs_y) {
863 size_t j1 = j0 + bs_y;
864 if (j1 > ny) j1 = ny;
867 float one = 1, zero = 0;
868 FINTEGER nyi = j1 - j0, nxi = i1 - i0, di = d;
869 sgemm_ (
"Transpose",
"Not transpose", &nyi, &nxi, &di, &one,
871 x + i0 * d, &di, &zero,
876 #pragma omp parallel for
877 for (
size_t i = i0; i < i1; i++) {
878 float * __restrict simi = res->get_val(i);
879 long * __restrict idxi = res->get_ids (i);
880 const float *ip_line = ip_block + (i - i0) * (j1 - j0);
882 for (
size_t j = j0; j < j1; j++) {
883 float ip = *ip_line++;
884 float dis = x_norms[i] + y_norms[j] - 2 * ip;
886 dis = corr (dis, i, j);
889 maxheap_pop (k, simi, idxi);
890 maxheap_push (k, simi, idxi, dis, j);
917 size_t d,
size_t nx,
size_t ny,
920 if (d % 4 == 0 && nx < 20) {
921 knn_inner_product_sse (x, y, d, nx, ny, res);
923 knn_inner_product_blas (x, y, d, nx, ny, res);
930 float operator()(
float dis,
size_t ,
size_t )
const {
937 size_t d,
size_t nx,
size_t ny,
940 if (d % 4 == 0 && nx < 20) {
941 knn_L2sqr_sse (x, y, d, nx, ny, res);
944 knn_L2sqr_blas (x, y, d, nx, ny, res, nop);
949 const float *base_shift;
950 float operator()(
float dis,
size_t ,
size_t bno)
const {
951 return dis - base_shift[bno];
958 size_t d,
size_t nx,
size_t ny,
960 const float *base_shift)
963 knn_L2sqr_blas (x, y, d, nx, ny, res, corr);
974 void fvec_inner_products_by_idx (
float * __restrict ip,
977 const long * __restrict ids,
978 size_t d,
size_t nx,
size_t ny)
980 #pragma omp parallel for
981 for (
size_t j = 0; j < nx; j++) {
982 const long * __restrict idsj = ids + j * ny;
983 const float * xj = x + j * d;
984 float * __restrict ipj = ip + j * ny;
985 for (
size_t i = 0; i < ny; i++) {
988 ipj[i] = fvec_inner_product (xj, y + d * idsj[i], d);
995 void fvec_L2sqr_by_idx (
float * __restrict dis,
998 const long * __restrict ids,
999 size_t d,
size_t nx,
size_t ny)
1001 #pragma omp parallel for
1002 for (
size_t j = 0; j < nx; j++) {
1003 const long * __restrict idsj = ids + j * ny;
1004 const float * xj = x + j * d;
1005 float * __restrict disj = dis + j * ny;
1006 for (
size_t i = 0; i < ny; i++) {
1009 disj[i] =
fvec_L2sqr (xj, y + d * idsj[i], d);
1020 void knn_inner_products_by_idx (
const float * x,
1023 size_t d,
size_t nx,
size_t ny,
1024 float_minheap_array_t * res)
1028 #pragma omp parallel for
1029 for (
size_t i = 0; i < nx; i++) {
1030 const float * x_ = x + i * d;
1031 const long * idsi = ids + i * ny;
1033 float * __restrict simi = res->get_val(i);
1034 long * __restrict idxi = res->get_ids (i);
1035 minheap_heapify (k, simi, idxi);
1037 for (j = 0; j < ny; j++) {
1038 if (idsi[j] < 0)
break;
1039 float ip = fvec_inner_product (x_, y + d * idsi[j], d);
1042 minheap_pop (k, simi, idxi);
1043 minheap_push (k, simi, idxi, ip, idsi[j]);
1046 minheap_reorder (k, simi, idxi);
1051 void knn_L2sqr_by_idx (
const float * x,
1053 const long * __restrict ids,
1054 size_t d,
size_t nx,
size_t ny,
1055 float_maxheap_array_t * res)
1059 #pragma omp parallel for
1060 for (
size_t i = 0; i < nx; i++) {
1061 const float * x_ = x + i * d;
1062 const long * __restrict idsi = ids + i * ny;
1063 float * __restrict simi = res->get_val(i);
1064 long * __restrict idxi = res->get_ids (i);
1065 maxheap_heapify (res->k, simi, idxi);
1066 for (
size_t j = 0; j < ny; j++) {
1067 float disij =
fvec_L2sqr (x_, y + d * idsi[j], d);
1069 if (disij < simi[0]) {
1070 maxheap_pop (k, simi, idxi);
1071 maxheap_push (k, simi, idxi, disij, idsi[j]);
1074 maxheap_reorder (res->k, simi, idxi);
1090 template <
bool compute_l2>
1091 static void range_search_blas (
1094 size_t d,
size_t nx,
size_t ny,
1096 RangeSearchResult *result)
1100 if (nx == 0 || ny == 0)
return;
1103 const size_t bs_x = 4096, bs_y = 1024;
1105 float *ip_block =
new float[bs_x * bs_y];
1107 float *x_norms =
nullptr, *y_norms =
nullptr;
1110 x_norms =
new float[nx];
1111 fvec_norms_L2sqr (x_norms, x, d, nx);
1112 y_norms =
new float[ny];
1113 fvec_norms_L2sqr (y_norms, y, d, ny);
1116 std::vector <RangeSearchPartialResult *> partial_results;
1118 for (
size_t j0 = 0; j0 < ny; j0 += bs_y) {
1119 size_t j1 = j0 + bs_y;
1120 if (j1 > ny) j1 = ny;
1121 RangeSearchPartialResult * pres =
new RangeSearchPartialResult (result);
1122 partial_results.push_back (pres);
1124 for (
size_t i0 = 0; i0 < nx; i0 += bs_x) {
1125 size_t i1 = i0 + bs_x;
1126 if(i1 > nx) i1 = nx;
1130 float one = 1, zero = 0;
1131 FINTEGER nyi = j1 - j0, nxi = i1 - i0, di = d;
1132 sgemm_ (
"Transpose",
"Not transpose", &nyi, &nxi, &di, &one,
1134 x + i0 * d, &di, &zero,
1139 for (
size_t i = i0; i < i1; i++) {
1140 const float *ip_line = ip_block + (i - i0) * (j1 - j0);
1142 RangeSearchPartialResult::QueryResult & qres =
1143 pres->new_result (i);
1145 for (
size_t j = j0; j < j1; j++) {
1146 float ip = *ip_line++;
1148 float dis = x_norms[i] + y_norms[j] - 2 * ip;
1167 int npres = partial_results.size();
1169 for (
size_t i = 0; i < nx; i++) {
1170 for (
int j = 0; j < npres; j++)
1171 result->lims[i] += partial_results[j]->queries[i].nres;
1173 result->do_allocation ();
1174 for (
int j = 0; j < npres; j++) {
1175 partial_results[j]->set_result (
true);
1176 delete partial_results[j];
1180 for (
size_t i = nx; i > 0; i--) {
1181 result->lims [i] = result->lims [i - 1];
1183 result->lims [0] = 0;
1188 template <
bool compute_l2>
1189 static void range_search_sse (
const float * x,
1191 size_t d,
size_t nx,
size_t ny,
1193 RangeSearchResult *res)
1195 FAISS_THROW_IF_NOT (d % 4 == 0);
1197 #pragma omp parallel
1199 RangeSearchPartialResult pres (res);
1202 for (
size_t i = 0; i < nx; i++) {
1203 const float * x_ = x + i * d;
1204 const float * y_ = y;
1207 RangeSearchPartialResult::QueryResult & qres =
1208 pres.new_result (i);
1210 for (j = 0; j < ny; j++) {
1213 if (disij < radius) {
1214 qres.add (disij, j);
1217 float ip = fvec_inner_product (x_, y_, d);
1237 size_t d,
size_t nx,
size_t ny,
1242 if (d % 4 == 0 && nx < 20) {
1243 range_search_sse<true> (x, y, d, nx, ny, radius, res);
1245 range_search_blas<true> (x, y, d, nx, ny, radius, res);
1252 size_t d,
size_t nx,
size_t ny,
1257 if (d % 4 == 0 && nx < 20) {
1258 range_search_sse<false> (x, y, d, nx, ny, radius, res);
1260 range_search_blas<false> (x, y, d, nx, ny, radius, res);
1274 void inner_product_to_L2sqr (
float * __restrict dis,
1277 size_t n1,
size_t n2)
1280 #pragma omp parallel for
1281 for (
size_t j = 0 ; j < n1 ; j++) {
1282 float * disj = dis + j * n2;
1283 for (
size_t i = 0 ; i < n2 ; i++)
1284 disj[i] = nr1[j] + nr2[i] - 2 * disj[i];
1291 FAISS_THROW_IF_NOT (m >= n);
1292 FINTEGER mi = m, ni = n, ki = mi < ni ? mi : ni;
1293 std::vector<float> tau (ki);
1294 FINTEGER lwork = -1, info;
1297 sgeqrf_ (&mi, &ni, a, &mi, tau.data(),
1298 &work_size, &lwork, &info);
1299 lwork = size_t(work_size);
1300 std::vector<float> work (lwork);
1302 sgeqrf_ (&mi, &ni, a, &mi,
1303 tau.data(), work.data(), &lwork, &info);
1305 sorgqr_ (&mi, &ni, &ki, a, &mi, tau.data(),
1306 work.data(), &lwork, &info);
1312 long nq,
const float *xq,
1313 long nb,
const float *xb,
1315 long ldq,
long ldb,
long ldd)
1317 if (nq == 0 || nb == 0)
return;
1318 if (ldq == -1) ldq = d;
1319 if (ldb == -1) ldb = d;
1320 if (ldd == -1) ldd = nb;
1323 float *b_norms = dis;
1325 #pragma omp parallel for
1326 for (
long i = 0; i < nb; i++)
1329 #pragma omp parallel for
1330 for (
long i = 1; i < nq; i++) {
1332 for (
long j = 0; j < nb; j++)
1333 dis[i * ldd + j] = q_norm + b_norms [j];
1338 for (
long j = 0; j < nb; j++)
1343 FINTEGER nbi = nb, nqi = nq, di = d, ldqi = ldq, ldbi = ldb, lddi = ldd;
1344 float one = 1.0, minus_2 = -2.0;
1346 sgemm_ (
"Transposed",
"Not transposed",
1365 #define EPS (1 / 1024.)
1372 size_t d,
size_t k,
size_t n)
1374 std::vector<size_t> hassign(k);
1375 memset (centroids, 0,
sizeof(*centroids) * d * k);
1378 #pragma omp parallel
1380 int nt = omp_get_num_threads();
1381 int rank = omp_get_thread_num();
1383 size_t c0 = (k * rank) / nt;
1384 size_t c1 = (k * (rank + 1)) / nt;
1385 const float *xi = x;
1389 for (
size_t i = 0; i < n; i++) {
1390 long ci = assign[i];
1391 assert (ci >= 0 && ci < k);
1392 if (ci >= c0 && ci < c1) {
1393 float * c = centroids + ci * d;
1395 for (
size_t j = 0; j < d; j++)
1405 #pragma omp parallel for
1406 for (
size_t ci = 0; ci < k; ci++) {
1407 float * c = centroids + ci * d;
1408 float ni = (float) hassign[ci];
1410 for (
size_t j = 0; j < d; j++)
1418 for (
size_t ci = 0; ci < k; ci++) {
1419 if (hassign[ci] == 0) {
1421 for (cj = 0; 1; cj = (cj + 1) % k) {
1423 float p = (hassign[cj] - 1.0) / (float) (n - k);
1429 memcpy (centroids+ci*d, centroids+cj*d,
sizeof(*centroids) * d);
1432 for (
size_t j = 0; j < d; j++) {
1434 centroids[ci * d + j] *= 1 + EPS;
1435 centroids[cj * d + j] *= 1 - EPS;
1437 centroids[ci * d + j] *= 1 - EPS;
1438 centroids[cj * d + j] *= 1 + EPS;
1443 hassign[ci] = hassign[cj] / 2;
1444 hassign[cj] -= hassign[ci];
1463 float prev_dis = -1e38;
1465 for (
int i = 0; i < k; i++) {
1466 if (dis[i] != prev_dis) {
1467 if (i > prev_i + 1) {
1469 std::sort (idx + prev_i, idx + i);
1478 long *I0,
float *D0,
1479 const long *I1,
const float *D1,
1485 #pragma omp parallel reduction(+:n1)
1487 std::vector<long> tmpI (k);
1488 std::vector<float> tmpD (k);
1491 for (
size_t i = 0; i < n; i++) {
1492 long *lI0 = I0 + i * k;
1493 float *lD0 = D0 + i * k;
1494 const long *lI1 = I1 + i * k;
1495 const float *lD1 = D1 + i * k;
1500 for (
size_t j = 0; j < k; j++) {
1502 if (lI0[r0] >= 0 && lD0[r0] < lD1[r1]) {
1506 }
else if (lD1[r1] >= 0) {
1508 tmpI[j] = lI1[r1] + translation;
1516 for (
size_t j = 0; j < k; j++) {
1517 if (lI0[r0] >= 0 && lD0[r0] > lD1[r1]) {
1521 }
else if (lD1[r1] >= 0) {
1523 tmpI[j] = lI1[r1] + translation;
1532 memcpy (lD0, tmpD.data(),
sizeof (lD0[0]) * k);
1533 memcpy (lI0, tmpI.data(),
sizeof (lI0[0]) * k);
1543 size_t k2,
const long *v2_in)
1546 long *v2 =
new long [k2];
1547 memcpy (v2, v2_in,
sizeof (
long) * k2);
1548 std::sort (v2, v2 + k2);
1552 for (
size_t i = 0; i < k2; i++) {
1553 if (v2 [i] != prev) {
1554 v2[wp++] = prev = v2 [i];
1559 const long seen_flag = 1L << 60;
1561 for (
size_t i = 0; i < k1; i++) {
1563 size_t i0 = 0, i1 = k2;
1564 while (i0 + 1 < i1) {
1565 size_t imed = (i1 + i0) / 2;
1566 long piv = v2 [imed] & ~seen_flag;
1567 if (piv <= q) i0 = imed;
1572 v2 [i0] |= seen_flag;
1581 double tot = 0, uf = 0;
1583 for (
int i = 0 ; i < k ; i++) {
1585 uf += hist[i] * (double) hist[i];
1587 uf = uf * k / (tot * tot);
1594 std::vector<int> hist(k, 0);
1595 for (
int i = 0; i < n; i++) {
1604 int ivec_hist (
size_t n,
const int * v,
int vmax,
int *hist) {
1605 memset (hist, 0,
sizeof(hist[0]) * vmax);
1608 if (v[n] < 0 || v[n] >= vmax) nout++;
1617 FAISS_THROW_IF_NOT (nbits % 8 == 0);
1618 size_t d = nbits / 8;
1619 std::vector<int> accu(d * 256);
1620 const uint8_t *c = codes;
1621 for (
size_t i = 0; i < n; i++)
1622 for(
int j = 0; j < d; j++)
1623 accu[j * 256 + *c++]++;
1624 memset (hist, 0,
sizeof(*hist) * nbits);
1625 for (
int i = 0; i < d; i++) {
1626 const int *ai = accu.data() + i * 256;
1627 int * hi = hist + i * 8;
1628 for (
int j = 0; j < 256; j++)
1629 for (
int k = 0; k < 8; k++)
1641 while (n--) cs = cs * 65713 + a[n] * 1686049;
1647 struct ArgsortComparator {
1649 bool operator() (
const size_t a,
const size_t b)
const {
1650 return vals[a] < vals[b];
1657 size_t len()
const {
1667 template<
typename T>
1668 void parallel_merge (
const T *src, T *dst,
1669 SegmentS &s1, SegmentS & s2,
int nt,
1670 const ArgsortComparator & comp) {
1671 if (s2.len() > s1.len()) {
1676 SegmentS s1s[nt], s2s[nt], sws[nt];
1678 s2s[nt - 1].i1 = s2.i1;
1681 #pragma omp parallel for num_threads(nt)
1682 for (
int t = 0; t < nt; t++) {
1683 s1s[t].i0 = s1.i0 + s1.len() * t / nt;
1684 s1s[t].i1 = s1.i0 + s1.len() * (t + 1) / nt;
1687 T pivot = src[s1s[t].i1];
1688 size_t i0 = s2.i0, i1 = s2.i1;
1689 while (i0 + 1 < i1) {
1690 size_t imed = (i1 + i0) / 2;
1691 if (comp (pivot, src[imed])) {i1 = imed; }
1694 s2s[t].i1 = s2s[t + 1].i0 = i1;
1697 s1.i0 = std::min(s1.i0, s2.i0);
1698 s1.i1 = std::max(s1.i1, s2.i1);
1701 for (
int t = 0; t < nt; t++) {
1702 sws[t].i1 = sws[t].i0 + s1s[t].len() + s2s[t].len();
1704 sws[t + 1].i0 = sws[t].i1;
1707 assert(sws[nt - 1].i1 == s1.i1);
1710 #pragma omp parallel for num_threads(nt)
1711 for (
int t = 0; t < nt; t++) {
1712 SegmentS sw = sws[t];
1713 SegmentS s1t = s1s[t];
1714 SegmentS s2t = s2s[t];
1715 if (s1t.i0 < s1t.i1 && s2t.i0 < s2t.i1) {
1718 if (comp(src[s1t.i0], src[s2t.i0])) {
1719 dst[sw.i0++] = src[s1t.i0++];
1720 if (s1t.i0 == s1t.i1)
break;
1722 dst[sw.i0++] = src[s2t.i0++];
1723 if (s2t.i0 == s2t.i1)
break;
1727 if (s1t.len() > 0) {
1728 assert(s1t.len() == sw.len());
1729 memcpy(dst + sw.i0, src + s1t.i0, s1t.len() *
sizeof(dst[0]));
1730 }
else if (s2t.len() > 0) {
1731 assert(s2t.len() == sw.len());
1732 memcpy(dst + sw.i0, src + s2t.i0, s2t.len() *
sizeof(dst[0]));
1739 void fvec_argsort (
size_t n,
const float *vals,
1742 for (
size_t i = 0; i < n; i++) perm[i] = i;
1743 ArgsortComparator comp = {vals};
1744 std::sort (perm, perm + n, comp);
1747 void fvec_argsort_parallel (
size_t n,
const float *vals,
1750 size_t * perm2 =
new size_t[n];
1752 size_t *permB = perm2, *permA = perm;
1754 int nt = omp_get_max_threads();
1759 nseg = (nseg + 1) / 2;
1760 std::swap (permA, permB);
1764 #pragma omp parallel
1765 for (
size_t i = 0; i < n; i++) permA[i] = i;
1767 ArgsortComparator comp = {vals};
1772 #pragma omp parallel for
1773 for (
int t = 0; t < nt; t++) {
1774 size_t i0 = t * n / nt;
1775 size_t i1 = (t + 1) * n / nt;
1776 SegmentS seg = {i0, i1};
1777 std::sort (permA + seg.i0, permA + seg.i1, comp);
1780 int prev_nested = omp_get_nested();
1785 int nseg1 = (nseg + 1) / 2;
1786 int sub_nt = nseg % 2 == 0 ? nt : nt - 1;
1787 int sub_nseg1 = nseg / 2;
1789 #pragma omp parallel for num_threads(nseg1)
1790 for (
int s = 0; s < nseg; s += 2) {
1791 if (s + 1 == nseg) {
1792 memcpy(permB + segs[s].i0, permA + segs[s].i0,
1793 segs[s].len() *
sizeof(
size_t));
1795 int t0 = s * sub_nt / sub_nseg1;
1796 int t1 = (s + 1) * sub_nt / sub_nseg1;
1797 printf(
"merge %d %d, %d threads\n", s, s + 1, t1 - t0);
1798 parallel_merge(permA, permB, segs[s], segs[s + 1],
1802 for (
int s = 0; s < nseg; s += 2)
1803 segs[s / 2] = segs[s];
1805 std::swap (permA, permB);
1807 assert (permA == perm);
1808 omp_set_nested(prev_nested);
1832 static inline void fvec_madd_ref (
size_t n,
const float *a,
1833 float bf,
const float *b,
float *c) {
1834 for (
size_t i = 0; i < n; i++)
1835 c[i] = a[i] + bf * b[i];
1839 static inline void fvec_madd_sse (
size_t n,
const float *a,
1840 float bf,
const float *b,
float *c) {
1842 __m128 bf4 = _mm_set_ps1 (bf);
1843 __m128 * a4 = (__m128*)a;
1844 __m128 * b4 = (__m128*)b;
1845 __m128 * c4 = (__m128*)c;
1848 *c4 = _mm_add_ps (*a4, _mm_mul_ps (bf4, *b4));
1856 float bf,
const float *b,
float *c)
1859 ((((
long)a) | ((
long)b) | ((
long)c)) & 15) == 0)
1860 fvec_madd_sse (n, a, bf, b, c);
1862 fvec_madd_ref (n, a, bf, b, c);
1865 static inline int fvec_madd_and_argmin_ref (
size_t n,
const float *a,
1866 float bf,
const float *b,
float *c) {
1870 for (
size_t i = 0; i < n; i++) {
1871 c[i] = a[i] + bf * b[i];
1880 static inline int fvec_madd_and_argmin_sse (
size_t n,
const float *a,
1881 float bf,
const float *b,
float *c) {
1883 __m128 bf4 = _mm_set_ps1 (bf);
1884 __m128 vmin4 = _mm_set_ps1 (1e20);
1885 __m128i imin4 = _mm_set1_epi32 (-1);
1886 __m128i idx4 = _mm_set_epi32 (3, 2, 1, 0);
1887 __m128i inc4 = _mm_set1_epi32 (4);
1888 __m128 * a4 = (__m128*)a;
1889 __m128 * b4 = (__m128*)b;
1890 __m128 * c4 = (__m128*)c;
1893 __m128 vc4 = _mm_add_ps (*a4, _mm_mul_ps (bf4, *b4));
1895 __m128i mask = (__m128i)_mm_cmpgt_ps (vmin4, vc4);
1898 imin4 = _mm_or_si128 (_mm_and_si128 (mask, idx4),
1899 _mm_andnot_si128 (mask, imin4));
1900 vmin4 = _mm_min_ps (vmin4, vc4);
1904 idx4 = _mm_add_epi32 (idx4, inc4);
1909 idx4 = _mm_shuffle_epi32 (imin4, 3 << 2 | 2);
1910 __m128 vc4 = _mm_shuffle_ps (vmin4, vmin4, 3 << 2 | 2);
1911 __m128i mask = (__m128i)_mm_cmpgt_ps (vmin4, vc4);
1912 imin4 = _mm_or_si128 (_mm_and_si128 (mask, idx4),
1913 _mm_andnot_si128 (mask, imin4));
1914 vmin4 = _mm_min_ps (vmin4, vc4);
1918 idx4 = _mm_shuffle_epi32 (imin4, 1);
1919 __m128 vc4 = _mm_shuffle_ps (vmin4, vmin4, 1);
1920 __m128i mask = (__m128i)_mm_cmpgt_ps (vmin4, vc4);
1921 imin4 = _mm_or_si128 (_mm_and_si128 (mask, idx4),
1922 _mm_andnot_si128 (mask, imin4));
1925 return _mm_extract_epi32 (imin4, 0);
1930 float bf,
const float *b,
float *c)
1933 ((((
long)a) | ((
long)b) | ((
long)c)) & 15) == 0)
1934 return fvec_madd_and_argmin_sse (n, a, bf, b, c);
1936 return fvec_madd_and_argmin_ref (n, a, bf, b, c);
1942 size_t d,
size_t *n,
size_t nmax,
const float *x,
1943 bool verbose,
long seed)
1946 if (*n <= nmax)
return x;
1950 printf (
" Input training set too big (max size is %ld), sampling "
1951 "%ld / %ld vectors\n", nmax, n2, *n);
1953 std::vector<int> subset (*n);
1954 rand_perm (subset.data (), *n, seed);
1955 float *x_subset =
new float[n2 * d];
1956 for (
long i = 0; i < n2; i++)
1957 memcpy (&x_subset[i * d],
1958 &x[subset[i] *
size_t(d)],
random generator that can be used in multithreaded contexts
void knn_L2sqr_base_shift(const float *x, const float *y, size_t d, size_t nx, size_t ny, float_maxheap_array_t *res, const float *base_shift)
RandomGenerator(long seed=1234)
initialize
int km_update_centroids(const float *x, float *centroids, long *assign, size_t d, size_t k, size_t n)
float fvec_L2sqr(const float *x, const float *y, size_t d)
Squared L2 distance between two vectors.
void bincode_hist(size_t n, size_t nbits, const uint8_t *codes, int *hist)
const float * fvecs_maybe_subsample(size_t d, size_t *n, size_t nmax, const float *x, bool verbose, long seed)
void ranklist_handle_ties(int k, long *idx, const float *dis)
float rand_float()
between 0 and 1
void fvec_madd(size_t n, const float *a, float bf, const float *b, float *c)
size_t get_mem_usage_kb()
get current RSS usage in kB
int ivec_hist(size_t n, const int *v, int vmax, int *hist)
compute histogram on v
long rand_long()
random long < 2 ^ 62
size_t merge_result_table_with(size_t n, size_t k, long *I0, float *D0, const long *I1, const float *D1, bool keep_min, long translation)
int rand_int()
random 31-bit positive integer
size_t ranklist_intersection_size(size_t k1, const long *v1, size_t k2, const long *v2_in)
void pairwise_L2sqr(long d, long nq, const float *xq, long nb, const float *xb, float *dis, long ldq, long ldb, long ldd)
void range_search_inner_product(const float *x, const float *y, size_t d, size_t nx, size_t ny, float radius, RangeSearchResult *res)
same as range_search_L2sqr for the inner product similarity
void knn_inner_product(const float *x, const float *y, size_t d, size_t nx, size_t ny, float_minheap_array_t *res)
double getmillisecs()
ms elapsed since some arbitrary epoch
double imbalance_factor(int k, const int *hist)
same, takes a histogram as input
float fvec_norm_L2sqr(const float *x, size_t d)
void range_search_L2sqr(const float *x, const float *y, size_t d, size_t nx, size_t ny, float radius, RangeSearchResult *res)
void matrix_qr(int m, int n, float *a)
size_t ivec_checksum(size_t n, const int *a)
compute a checksum on a table.
int fvec_madd_and_argmin(size_t n, const float *a, float bf, const float *b, float *c)
void knn_L2sqr(const float *x, const float *y, size_t d, size_t nx, size_t ny, float_maxheap_array_t *res)