# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the CC-by-NC license found in the # LICENSE file in the root directory of this source tree. import numpy as np d = 64 # dimension nb = 100000 # database size nq = 10000 # nb of queries np.random.seed(1234) # make reproducible xb = np.random.random((nb, d)).astype('float32') xb[:, 0] += np.arange(nb) / 1000. xq = np.random.random((nq, d)).astype('float32') xq[:, 0] += np.arange(nq) / 1000. import faiss # make faiss available index = faiss.IndexFlatL2(d) # build the index print index.is_trained index.add(xb) # add vectors to the index print index.ntotal k = 4 # we want to see 4 nearest neighbors D, I = index.search(xb[:5], k) # sanity check print I print D D, I = index.search(xq, k) # actual search print I[:5] # neighbors of the 5 first queries print I[-5:] # neighbors of the 5 last queries