20 #include <faiss/IndexPQ.h>
21 #include <faiss/IndexIVF.h>
22 #include <faiss/IndexFlat.h>
23 #include <faiss/index_io.h>
28 gettimeofday (&tv,
nullptr);
29 return tv.tv_sec + tv.tv_usec * 1e-6;
35 double t0 = elapsed();
41 size_t nb = 1000 * 1000;
45 size_t nt = 100 * 1000;
64 size_t nbits_subq = int (log2 (nb+1) / 2);
65 size_t ncentroids = 1 << (nhash * nbits_subq);
69 printf (
"IMI (%ld,%ld): %ld virtual centroids (target: %ld base vectors)",
70 nhash, nbits_subq, ncentroids, nb);
77 index.quantizer_trains_alone =
true;
85 printf (
"[%.3f s] Generating %ld vectors in %dD for training\n",
86 elapsed() - t0, nt, d);
88 std::vector <float> trainvecs (nt * d);
89 for (
size_t i = 0; i < nt * d; i++) {
90 trainvecs[i] = drand48();
93 printf (
"[%.3f s] Training the index\n", elapsed() - t0);
95 index.train (nt, trainvecs.data());
99 std::vector<float> queries;
102 printf (
"[%.3f s] Building a dataset of %ld vectors to index\n",
105 std::vector <float> database (nb * d);
106 for (
size_t i = 0; i < nb * d; i++) {
107 database[i] = drand48();
110 printf (
"[%.3f s] Adding the vectors to the index\n", elapsed() - t0);
112 index.add (nb, database.data());
119 queries.resize (nq * d);
120 for (
int i = i0; i < i1; i++) {
121 for (
int j = 0; j < d; j++) {
122 queries [(i - i0) * d + j] = database [i * d + j];
129 printf (
"[%.3f s] Searching the %d nearest neighbors "
130 "of %ld vectors in the index\n",
131 elapsed() - t0, k, nq);
133 std::vector<faiss::Index::idx_t> nns (k * nq);
134 std::vector<float> dis (k * nq);
136 index.search (nq, queries.data(), k, dis.data(), nns.data());
138 printf (
"[%.3f s] Query results (vector ids, then distances):\n",
141 for (
int i = 0; i < nq; i++) {
142 printf (
"query %2d: ", i);
143 for (
int j = 0; j < k; j++) {
144 printf (
"%7ld ", nns[j + i * k]);
147 for (
int j = 0; j < k; j++) {
148 printf (
"%7g ", dis[j + i * k]);
MetricType
Some algorithms support both an inner product vetsion and a L2 search version.