20 #include <smmintrin.h>
24 #include <sys/types.h>
33 #include "AuxIndexStructures.h"
34 #include "FaissAssert.h"
47 int sgemm_ (
const char *transa,
const char *transb, FINTEGER *m, FINTEGER *
48 n, FINTEGER *k,
const float *alpha,
const float *a,
49 FINTEGER *lda,
const float *b, FINTEGER *
50 ldb,
float *beta,
float *c, FINTEGER *ldc);
54 int sgeqrf_ (FINTEGER *m, FINTEGER *n,
float *a, FINTEGER *lda,
55 float *tau,
float *work, FINTEGER *lwork, FINTEGER *info);
57 int sorgqr_(FINTEGER *m, FINTEGER *n, FINTEGER *k,
float *a,
58 FINTEGER *lda,
float *tau,
float *work,
59 FINTEGER *lwork, FINTEGER *info);
73 gettimeofday (&tv,
nullptr);
74 return tv.tv_sec * 1e3 + tv.tv_usec * 1e-3;
84 snprintf (fname, 256,
"/proc/%d/status", pid);
85 FILE * f = fopen (fname,
"r");
86 FAISS_ASSERT (f || !
"cannot open proc status file") ;
90 if (!fgets (buf, 256, f))
break;
91 if (sscanf (buf,
"VmRSS: %ld kB", &sz) == 1)
break;
101 fprintf(stderr,
"WARN: get_mem_usage_kb not implemented on the mac\n");
139 random_r (&rand_data, &a);
146 random_r (&rand_data, &a);
147 random_r (&rand_data, &b);
148 return long(a) | long(b) << 31;
154 memset (&rand_data, 0,
sizeof (rand_data));
155 initstate_r (seed, rand_state,
sizeof (rand_state), &rand_data);
161 memcpy (rand_state, other.rand_state,
sizeof(rand_state));
162 rand_data = other.rand_data;
163 setstate_r (rand_state, &rand_data);
170 int rand_r(
unsigned *seed);
181 rand_state = other.rand_state;
189 int lowbits = rand_r(&rand_state) >> 15;
190 return rand_r(&rand_state) ^ lowbits;
195 return long(random()) | long(random()) << 31;
210 return rand_int() / float(1L << 31);
213 double RandomGenerator::rand_double ()
227 void float_rand (
float * x,
size_t n,
long seed)
230 const size_t nblock = n < 1024 ? 1 : 1024;
232 RandomGenerator rng0 (seed);
233 int a0 = rng0.rand_int (), b0 = rng0.rand_int ();
235 #pragma omp parallel for
236 for (
size_t j = 0; j < nblock; j++) {
238 RandomGenerator rng (a0 + j * b0);
240 const size_t istart = j * n / nblock;
241 const size_t iend = (j + 1) * n / nblock;
243 for (
size_t i = istart; i < iend; i++)
244 x[i] = rng.rand_float ();
249 void float_randn (
float * x,
size_t n,
long seed)
252 const size_t nblock = n < 1024 ? 1 : 1024;
254 RandomGenerator rng0 (seed);
255 int a0 = rng0.rand_int (), b0 = rng0.rand_int ();
257 #pragma omp parallel for
258 for (
size_t j = 0; j < nblock; j++) {
259 RandomGenerator rng (a0 + j * b0);
261 double a = 0, b = 0, s = 0;
264 const size_t istart = j * n / nblock;
265 const size_t iend = (j + 1) * n / nblock;
267 for (
size_t i = istart; i < iend; i++) {
271 a = 2.0 * rng.rand_double () - 1;
272 b = 2.0 * rng.rand_double () - 1;
275 x[i] = a * sqrt(-2.0 * log(s) / s);
278 x[i] = b * sqrt(-2.0 * log(s) / s);
286 void long_rand (
long * x,
size_t n,
long seed)
289 const size_t nblock = n < 1024 ? 1 : 1024;
291 RandomGenerator rng0 (seed);
292 int a0 = rng0.rand_int (), b0 = rng0.rand_int ();
294 #pragma omp parallel for
295 for (
size_t j = 0; j < nblock; j++) {
297 RandomGenerator rng (a0 + j * b0);
299 const size_t istart = j * n / nblock;
300 const size_t iend = (j + 1) * n / nblock;
301 for (
size_t i = istart; i < iend; i++)
302 x[i] = rng.rand_long ();
308 void rand_perm (
int *perm,
size_t n,
long seed)
310 for (
size_t i = 0; i < n; i++) perm[i] = i;
312 RandomGenerator rng (seed);
314 for (
size_t i = 0; i + 1 < n; i++) {
315 int i2 = i + rng.rand_int (n - i);
316 std::swap(perm[i], perm[i2]);
323 void byte_rand (uint8_t * x,
size_t n,
long seed)
326 const size_t nblock = n < 1024 ? 1 : 1024;
328 RandomGenerator rng0 (seed);
329 int a0 = rng0.rand_int (), b0 = rng0.rand_int ();
331 #pragma omp parallel for
332 for (
size_t j = 0; j < nblock; j++) {
334 RandomGenerator rng (a0 + j * b0);
336 const size_t istart = j * n / nblock;
337 const size_t iend = (j + 1) * n / nblock;
340 for (i = istart; i < iend; i++)
341 x[i] = rng.rand_long ();
347 void reflection (
const float * __restrict u,
348 float * __restrict x,
349 size_t n,
size_t d,
size_t nu)
352 for (i = 0; i < n; i++) {
353 const float * up = u;
354 for (l = 0; l < nu; l++) {
355 float ip1 = 0, ip2 = 0;
357 for (j = 0; j < d; j+=2) {
359 ip2 += up[j+1] * x[j+1];
361 float ip = 2 * (ip1 + ip2);
363 for (j = 0; j < d; j++)
373 void reflection_ref (
const float * u,
float * x,
size_t n,
size_t d,
size_t nu)
376 for (i = 0; i < n; i++) {
377 const float * up = u;
378 for (l = 0; l < nu; l++) {
381 for (j = 0; j < d; j++)
385 for (j = 0; j < d; j++)
416 static inline __m128 masked_read (
int d,
const float *x)
418 assert (0 <= d && d < 4);
419 __attribute__((__aligned__(16))) float buf[4] = {0, 0, 0, 0};
428 return _mm_load_ps (buf);
437 __m128 msum1 = _mm_setzero_ps();
440 mx = _mm_loadu_ps (x); x += 4;
441 my = _mm_loadu_ps (y); y += 4;
442 const __m128 a_m_b1 = _mm_sub_ps (mx, my);
443 msum1 = _mm_add_ps (msum1, _mm_mul_ps (a_m_b1, a_m_b1));
448 mx = masked_read (d, x);
449 my = masked_read (d, y);
450 __m128 a_m_b1 = _mm_sub_ps (mx, my);
452 msum1 = _mm_add_ps (msum1, _mm_mul_ps (a_m_b1, a_m_b1));
454 msum1 = _mm_hadd_ps (msum1, msum1);
455 msum1 = _mm_hadd_ps (msum1, msum1);
456 return _mm_cvtss_f32 (msum1);
461 float fvec_L2sqr_ref (
const float * x,
467 for (i = 0; i < d; i++) {
468 const float tmp = x[i] - y[i];
474 float fvec_inner_product (
const float * x,
479 __m128 msum1 = _mm_setzero_ps();
482 mx = _mm_loadu_ps (x); x += 4;
483 my = _mm_loadu_ps (y); y += 4;
484 msum1 = _mm_add_ps (msum1, _mm_mul_ps (mx, my));
489 mx = masked_read (d, x);
490 my = masked_read (d, y);
491 __m128 prod = _mm_mul_ps (mx, my);
493 msum1 = _mm_add_ps (msum1, prod);
495 msum1 = _mm_hadd_ps (msum1, msum1);
496 msum1 = _mm_hadd_ps (msum1, msum1);
497 return _mm_cvtss_f32 (msum1);
501 float fvec_inner_product_ref (
const float * x,
507 for (i = 0; i < d; i++)
517 __m128 msum1 = _mm_setzero_ps();
520 mx = _mm_loadu_ps (x); x += 4;
521 msum1 = _mm_add_ps (msum1, _mm_mul_ps (mx, mx));
525 mx = masked_read (d, x);
526 msum1 = _mm_add_ps (msum1, _mm_mul_ps (mx, mx));
528 msum1 = _mm_hadd_ps (msum1, msum1);
529 msum1 = _mm_hadd_ps (msum1, msum1);
530 return _mm_cvtss_f32 (msum1);
534 float fvec_norm_L2sqr_ref (
const float * __restrict x,
539 for (i = 0; i < d; i++)
551 void fvec_inner_products_ny (
float * __restrict ip,
556 for (
size_t i = 0; i < ny; i++) {
557 ip[i] = fvec_inner_product (x, y, d);
566 void fvec_L2sqr_ny (
float * __restrict dis,
571 for (
size_t i = 0; i < ny; i++) {
581 void fvec_norms_L2 (
float * __restrict nr,
582 const float * __restrict x,
586 #pragma omp parallel for
587 for (
size_t i = 0; i < nx; i++) {
592 void fvec_norms_L2sqr (
float * __restrict nr,
593 const float * __restrict x,
596 #pragma omp parallel for
597 for (
size_t i = 0; i < nx; i++)
603 void fvec_renorm_L2 (
size_t d,
size_t nx,
float * __restrict x)
605 #pragma omp parallel for
606 for (
size_t i = 0; i < nx; i++) {
607 float * __restrict xi = x + i * d;
613 const float inv_nr = 1.0 / sqrtf (nr);
614 for (j = 0; j < d; j++)
643 static void knn_inner_product_sse (
const float * x,
645 size_t d,
size_t nx,
size_t ny,
646 float_minheap_array_t * res)
650 #pragma omp parallel for
651 for (
size_t i = 0; i < nx; i++) {
652 const float * x_ = x + i * d;
653 const float * y_ = y;
655 float * __restrict simi = res->get_val(i);
656 long * __restrict idxi = res->get_ids (i);
658 minheap_heapify (k, simi, idxi);
660 for (
size_t j = 0; j < ny; j++) {
661 float ip = fvec_inner_product (x_, y_, d);
664 minheap_pop (k, simi, idxi);
665 minheap_push (k, simi, idxi, ip, j);
669 minheap_reorder (k, simi, idxi);
674 static void knn_L2sqr_sse (
677 size_t d,
size_t nx,
size_t ny,
678 float_maxheap_array_t * res)
682 #pragma omp parallel for
683 for (
size_t i = 0; i < nx; i++) {
684 const float * x_ = x + i * d;
685 const float * y_ = y;
687 float * __restrict simi = res->get_val(i);
688 long * __restrict idxi = res->get_ids (i);
690 maxheap_heapify (k, simi, idxi);
691 for (j = 0; j < ny; j++) {
694 if (disij < simi[0]) {
695 maxheap_pop (k, simi, idxi);
696 maxheap_push (k, simi, idxi, disij, j);
700 maxheap_reorder (k, simi, idxi);
707 static void knn_inner_product_blas (
710 size_t d,
size_t nx,
size_t ny,
711 float_minheap_array_t * res)
716 if (nx == 0 || ny == 0)
return;
719 const size_t bs_x = 4096, bs_y = 1024;
721 float *ip_block =
new float[bs_x * bs_y];
723 for (
size_t i0 = 0; i0 < nx; i0 += bs_x) {
724 size_t i1 = i0 + bs_x;
727 for (
size_t j0 = 0; j0 < ny; j0 += bs_y) {
728 size_t j1 = j0 + bs_y;
729 if (j1 > ny) j1 = ny;
732 float one = 1, zero = 0;
733 FINTEGER nyi = j1 - j0, nxi = i1 - i0, di = d;
734 sgemm_ (
"Transpose",
"Not transpose", &nyi, &nxi, &di, &one,
736 x + i0 * d, &di, &zero,
741 res->addn (j1 - j0, ip_block, j0, i0, i1 - i0);
750 template<
class DistanceCorrection>
751 static void knn_L2sqr_blas (
const float * x,
753 size_t d,
size_t nx,
size_t ny,
754 float_maxheap_array_t * res,
755 const DistanceCorrection &corr)
760 if (nx == 0 || ny == 0)
return;
765 const size_t bs_x = 4096, bs_y = 1024;
767 float *ip_block =
new float[bs_x * bs_y];
769 float *x_norms =
new float[nx];
770 fvec_norms_L2sqr (x_norms, x, d, nx);
772 float *y_norms =
new float[ny];
773 fvec_norms_L2sqr (y_norms, y, d, ny);
775 for (
size_t i0 = 0; i0 < nx; i0 += bs_x) {
776 size_t i1 = i0 + bs_x;
779 for (
size_t j0 = 0; j0 < ny; j0 += bs_y) {
780 size_t j1 = j0 + bs_y;
781 if (j1 > ny) j1 = ny;
784 float one = 1, zero = 0;
785 FINTEGER nyi = j1 - j0, nxi = i1 - i0, di = d;
786 sgemm_ (
"Transpose",
"Not transpose", &nyi, &nxi, &di, &one,
788 x + i0 * d, &di, &zero,
793 #pragma omp parallel for
794 for (
size_t i = i0; i < i1; i++) {
795 float * __restrict simi = res->get_val(i);
796 long * __restrict idxi = res->get_ids (i);
797 const float *ip_line = ip_block + (i - i0) * (j1 - j0);
799 for (
size_t j = j0; j < j1; j++) {
800 float ip = *ip_line++;
801 float dis = x_norms[i] + y_norms[j] - 2 * ip;
803 dis = corr (dis, i, j);
806 maxheap_pop (k, simi, idxi);
807 maxheap_push (k, simi, idxi, dis, j);
834 size_t d,
size_t nx,
size_t ny,
837 if (d % 4 == 0 && nx < 20) {
838 knn_inner_product_sse (x, y, d, nx, ny, res);
840 knn_inner_product_blas (x, y, d, nx, ny, res);
847 float operator()(
float dis,
size_t qno,
size_t bno)
const {
854 size_t d,
size_t nx,
size_t ny,
857 if (d % 4 == 0 && nx < 20) {
858 knn_L2sqr_sse (x, y, d, nx, ny, res);
861 knn_L2sqr_blas (x, y, d, nx, ny, res, nop);
866 const float *base_shift;
867 float operator()(
float dis,
size_t qno,
size_t bno)
const {
868 return dis - base_shift[bno];
875 size_t d,
size_t nx,
size_t ny,
877 const float *base_shift)
880 knn_L2sqr_blas (x, y, d, nx, ny, res, corr);
891 void fvec_inner_products_by_idx (
float * __restrict ip,
894 const long * __restrict ids,
895 size_t d,
size_t nx,
size_t ny)
897 #pragma omp parallel for
898 for (
size_t j = 0; j < nx; j++) {
899 const long * __restrict idsj = ids + j * ny;
900 const float * xj = x + j * d;
901 float * __restrict ipj = ip + j * ny;
902 for (
size_t i = 0; i < ny; i++) {
905 ipj[i] = fvec_inner_product (xj, y + d * idsj[i], d);
912 void fvec_L2sqr_by_idx (
float * __restrict dis,
915 const long * __restrict ids,
916 size_t d,
size_t nx,
size_t ny)
918 #pragma omp parallel for
919 for (
size_t j = 0; j < nx; j++) {
920 const long * __restrict idsj = ids + j * ny;
921 const float * xj = x + j * d;
922 float * __restrict disj = dis + j * ny;
923 for (
size_t i = 0; i < ny; i++) {
926 disj[i] =
fvec_L2sqr (xj, y + d * idsj[i], d);
937 void knn_inner_products_by_idx (
const float * x,
940 size_t d,
size_t nx,
size_t ny,
941 float_minheap_array_t * res)
945 #pragma omp parallel for
946 for (
size_t i = 0; i < nx; i++) {
947 const float * x_ = x + i * d;
948 const long * idsi = ids + i * ny;
950 float * __restrict simi = res->get_val(i);
951 long * __restrict idxi = res->get_ids (i);
952 minheap_heapify (k, simi, idxi);
954 for (j = 0; j < ny; j++) {
955 if (idsi[j] < 0)
break;
956 float ip = fvec_inner_product (x_, y + d * idsi[j], d);
959 minheap_pop (k, simi, idxi);
960 minheap_push (k, simi, idxi, ip, idsi[j]);
963 minheap_reorder (k, simi, idxi);
968 void knn_L2sqr_by_idx (
const float * x,
970 const long * __restrict ids,
971 size_t d,
size_t nx,
size_t ny,
972 float_maxheap_array_t * res)
976 #pragma omp parallel for
977 for (
size_t i = 0; i < nx; i++) {
978 const float * x_ = x + i * d;
979 const long * __restrict idsi = ids + i * ny;
980 float * __restrict simi = res->get_val(i);
981 long * __restrict idxi = res->get_ids (i);
982 maxheap_heapify (res->k, simi, idxi);
983 for (
size_t j = 0; j < ny; j++) {
984 float disij =
fvec_L2sqr (x_, y + d * idsi[j], d);
986 if (disij < simi[0]) {
987 maxheap_pop (k, simi, idxi);
988 maxheap_push (k, simi, idxi, disij, idsi[j]);
991 maxheap_reorder (res->k, simi, idxi);
1007 template <
bool compute_l2>
1008 static void range_search_blas (
1011 size_t d,
size_t nx,
size_t ny,
1013 RangeSearchResult *result)
1017 if (nx == 0 || ny == 0)
return;
1020 const size_t bs_x = 4096, bs_y = 1024;
1022 float *ip_block =
new float[bs_x * bs_y];
1024 float *x_norms =
nullptr, *y_norms =
nullptr;
1027 x_norms =
new float[nx];
1028 fvec_norms_L2sqr (x_norms, x, d, nx);
1029 y_norms =
new float[ny];
1030 fvec_norms_L2sqr (y_norms, y, d, ny);
1033 std::vector <RangeSearchPartialResult *> partial_results;
1035 for (
size_t j0 = 0; j0 < ny; j0 += bs_y) {
1036 size_t j1 = j0 + bs_y;
1037 if (j1 > ny) j1 = ny;
1038 RangeSearchPartialResult * pres =
new RangeSearchPartialResult (result);
1039 partial_results.push_back (pres);
1041 for (
size_t i0 = 0; i0 < nx; i0 += bs_x) {
1042 size_t i1 = i0 + bs_x;
1043 if(i1 > nx) i1 = nx;
1047 float one = 1, zero = 0;
1048 FINTEGER nyi = j1 - j0, nxi = i1 - i0, di = d;
1049 sgemm_ (
"Transpose",
"Not transpose", &nyi, &nxi, &di, &one,
1051 x + i0 * d, &di, &zero,
1056 for (
size_t i = i0; i < i1; i++) {
1057 const float *ip_line = ip_block + (i - i0) * (j1 - j0);
1059 RangeSearchPartialResult::QueryResult & qres =
1060 pres->new_result (i);
1062 for (
size_t j = j0; j < j1; j++) {
1063 float ip = *ip_line++;
1065 float dis = x_norms[i] + y_norms[j] - 2 * ip;
1084 int npres = partial_results.size();
1086 for (
size_t i = 0; i < nx; i++) {
1087 for (
int j = 0; j < npres; j++)
1088 result->lims[i] += partial_results[j]->queries[i].nres;
1090 result->do_allocation ();
1091 for (
int j = 0; j < npres; j++) {
1092 partial_results[j]->set_result (
true);
1093 delete partial_results[j];
1097 for (
size_t i = nx; i > 0; i--) {
1098 result->lims [i] = result->lims [i - 1];
1100 result->lims [0] = 0;
1105 template <
bool compute_l2>
1106 static void range_search_sse (
const float * x,
1108 size_t d,
size_t nx,
size_t ny,
1110 RangeSearchResult *res)
1112 FAISS_ASSERT (d % 4 == 0);
1114 #pragma omp parallel
1116 RangeSearchPartialResult pres (res);
1119 for (
size_t i = 0; i < nx; i++) {
1120 const float * x_ = x + i * d;
1121 const float * y_ = y;
1124 RangeSearchPartialResult::QueryResult & qres =
1125 pres.new_result (i);
1127 for (j = 0; j < ny; j++) {
1130 if (disij < radius) {
1131 qres.add (disij, j);
1134 float ip = fvec_inner_product (x_, y_, d);
1154 size_t d,
size_t nx,
size_t ny,
1159 if (d % 4 == 0 && nx < 20) {
1160 range_search_sse<true> (x, y, d, nx, ny, radius, res);
1162 range_search_blas<true> (x, y, d, nx, ny, radius, res);
1169 size_t d,
size_t nx,
size_t ny,
1174 if (d % 4 == 0 && nx < 20) {
1175 range_search_sse<false> (x, y, d, nx, ny, radius, res);
1177 range_search_blas<false> (x, y, d, nx, ny, radius, res);
1191 void inner_product_to_L2sqr (
float * __restrict dis,
1194 size_t n1,
size_t n2)
1197 #pragma omp parallel for
1198 for (
size_t j = 0 ; j < n1 ; j++) {
1199 float * disj = dis + j * n2;
1200 for (
size_t i = 0 ; i < n2 ; i++)
1201 disj[i] = nr1[j] + nr2[i] - 2 * disj[i];
1208 FAISS_ASSERT(m >= n);
1209 FINTEGER mi = m, ni = n, ki = mi < ni ? mi : ni;
1210 std::vector<float> tau (ki);
1211 FINTEGER lwork = -1, info;
1214 sgeqrf_ (&mi, &ni, a, &mi, tau.data(),
1215 &work_size, &lwork, &info);
1216 lwork = size_t(work_size);
1217 std::vector<float> work (lwork);
1219 sgeqrf_ (&mi, &ni, a, &mi,
1220 tau.data(), work.data(), &lwork, &info);
1222 sorgqr_ (&mi, &ni, &ki, a, &mi, tau.data(),
1223 work.data(), &lwork, &info);
1229 long nq,
const float *xq,
1230 long nb,
const float *xb,
1232 long ldq,
long ldb,
long ldd)
1234 if (nq == 0 || nb == 0)
return;
1235 if (ldq == -1) ldq = d;
1236 if (ldb == -1) ldb = d;
1237 if (ldd == -1) ldd = nb;
1240 float *b_norms = dis;
1242 #pragma omp parallel for
1243 for (
long i = 0; i < nb; i++)
1246 #pragma omp parallel for
1247 for (
long i = 1; i < nq; i++) {
1249 for (
long j = 0; j < nb; j++)
1250 dis[i * ldd + j] = q_norm + b_norms [j];
1255 for (
long j = 0; j < nb; j++)
1260 FINTEGER nbi = nb, nqi = nq, di = d, ldqi = ldq, ldbi = ldb, lddi = ldd;
1261 float one = 1.0, minus_2 = -2.0;
1263 sgemm_ (
"Transposed",
"Not transposed",
1282 #define EPS (1 / 1024.)
1289 size_t d,
size_t k,
size_t n)
1291 std::vector<size_t> hassign(k);
1292 memset (centroids, 0,
sizeof(*centroids) * d * k);
1295 #pragma omp parallel
1297 int nt = omp_get_num_threads();
1298 int rank = omp_get_thread_num();
1300 size_t c0 = (k * rank) / nt;
1301 size_t c1 = (k * (rank + 1)) / nt;
1302 const float *xi = x;
1306 for (
size_t i = 0; i < n; i++) {
1307 long ci = assign[i];
1308 assert (ci >= 0 && ci < k);
1309 if (ci >= c0 && ci < c1) {
1310 float * c = centroids + ci * d;
1312 for (
size_t j = 0; j < d; j++)
1322 #pragma omp parallel for
1323 for (
size_t ci = 0; ci < k; ci++) {
1324 float * c = centroids + ci * d;
1325 float ni = (float) hassign[ci];
1327 for (
size_t j = 0; j < d; j++)
1335 for (
size_t ci = 0; ci < k; ci++) {
1336 if (hassign[ci] == 0) {
1338 for (cj = 0; 1; cj = (cj+1) % k) {
1340 float p = (hassign[cj] - 1.0) / (float) (n - k);
1346 memcpy (centroids+ci*d, centroids+cj*d,
sizeof(*centroids) * d);
1349 for (
size_t j = 0; j < d; j++)
1351 centroids[ci * d + j] *= 1 + EPS;
1352 centroids[cj * d + j] *= 1 - EPS;
1355 centroids[ci * d + j] *= 1 + EPS;
1356 centroids[cj * d + j] *= 1 - EPS;
1360 hassign[ci] = hassign[cj] / 2;
1361 hassign[cj] -= hassign[ci];
1380 float prev_dis = -1e38;
1382 for (
int i = 0; i < k; i++) {
1383 if (dis[i] != prev_dis) {
1384 if (i > prev_i + 1) {
1386 std::sort (idx + prev_i, idx + i);
1395 size_t k2,
const long *v2_in)
1398 long *v2 =
new long [k2];
1399 memcpy (v2, v2_in,
sizeof (
long) * k2);
1400 std::sort (v2, v2 + k2);
1404 for (
size_t i = 0; i < k2; i++) {
1405 if (v2 [i] != prev) {
1406 v2[wp++] = prev = v2 [i];
1411 const long seen_flag = 1L << 60;
1413 for (
size_t i = 0; i < k1; i++) {
1415 size_t i0 = 0, i1 = k2;
1416 while (i0 + 1 < i1) {
1417 size_t imed = (i1 + i0) / 2;
1418 long piv = v2 [imed] & ~seen_flag;
1419 if (piv <= q) i0 = imed;
1424 v2 [i0] |= seen_flag;
1433 double tot = 0, uf = 0;
1435 for (
int i = 0 ; i < k ; i++) {
1437 uf += hist[i] * (double) hist[i];
1439 uf = uf * k / (tot * tot);
1446 std::vector<int> hist(k, 0);
1447 for (
int i = 0; i < n; i++) {
1456 int ivec_hist (
size_t n,
const int * v,
int vmax,
int *hist) {
1457 memset (hist, 0,
sizeof(hist[0]) * vmax);
1460 if (v[n] < 0 || v[n] >= vmax) nout++;
1469 FAISS_ASSERT (nbits % 8 == 0);
1470 size_t d = nbits / 8;
1471 std::vector<int> accu(d * 256);
1472 const uint8_t *c = codes;
1473 for (
size_t i = 0; i < n; i++)
1474 for(
int j = 0; j < d; j++)
1475 accu[j * 256 + *c++]++;
1476 memset (hist, 0,
sizeof(*hist) * nbits);
1477 for (
int i = 0; i < d; i++) {
1478 const int *ai = accu.data() + i * 256;
1479 int * hi = hist + i * 8;
1480 for (
int j = 0; j < 256; j++)
1481 for (
int k = 0; k < 8; k++)
1493 while (n--) cs = cs * 65713 + a[n] * 1686049;
1499 struct ArgsortComparator {
1501 bool operator() (
const size_t a,
const size_t b)
const {
1502 return vals[a] < vals[b];
1509 size_t len()
const {
1519 template<
typename T>
1520 void parallel_merge (
const T *src, T *dst,
1521 SegmentS &s1, SegmentS & s2,
int nt,
1522 const ArgsortComparator & comp) {
1523 if (s2.len() > s1.len()) {
1528 SegmentS s1s[nt], s2s[nt], sws[nt];
1530 s2s[nt - 1].i1 = s2.i1;
1533 #pragma omp parallel for num_threads(nt)
1534 for (
int t = 0; t < nt; t++) {
1535 s1s[t].i0 = s1.i0 + s1.len() * t / nt;
1536 s1s[t].i1 = s1.i0 + s1.len() * (t + 1) / nt;
1539 T pivot = src[s1s[t].i1];
1540 size_t i0 = s2.i0, i1 = s2.i1;
1541 while (i0 + 1 < i1) {
1542 size_t imed = (i1 + i0) / 2;
1543 if (comp (pivot, src[imed])) {i1 = imed; }
1546 s2s[t].i1 = s2s[t + 1].i0 = i1;
1549 s1.i0 = std::min(s1.i0, s2.i0);
1550 s1.i1 = std::max(s1.i1, s2.i1);
1553 for (
int t = 0; t < nt; t++) {
1554 sws[t].i1 = sws[t].i0 + s1s[t].len() + s2s[t].len();
1556 sws[t + 1].i0 = sws[t].i1;
1559 assert(sws[nt - 1].i1 == s1.i1);
1562 #pragma omp parallel for num_threads(nt)
1563 for (
int t = 0; t < nt; t++) {
1564 SegmentS sw = sws[t];
1565 SegmentS s1t = s1s[t];
1566 SegmentS s2t = s2s[t];
1567 if (s1t.i0 < s1t.i1 && s2t.i0 < s2t.i1) {
1570 if (comp(src[s1t.i0], src[s2t.i0])) {
1571 dst[sw.i0++] = src[s1t.i0++];
1572 if (s1t.i0 == s1t.i1)
break;
1574 dst[sw.i0++] = src[s2t.i0++];
1575 if (s2t.i0 == s2t.i1)
break;
1579 if (s1t.len() > 0) {
1580 assert(s1t.len() == sw.len());
1581 memcpy(dst + sw.i0, src + s1t.i0, s1t.len() *
sizeof(dst[0]));
1582 }
else if (s2t.len() > 0) {
1583 assert(s2t.len() == sw.len());
1584 memcpy(dst + sw.i0, src + s2t.i0, s2t.len() *
sizeof(dst[0]));
1591 void fvec_argsort (
size_t n,
const float *vals,
1594 for (
size_t i = 0; i < n; i++) perm[i] = i;
1595 ArgsortComparator comp = {vals};
1596 std::sort (perm, perm + n, comp);
1599 void fvec_argsort_parallel (
size_t n,
const float *vals,
1602 size_t * perm2 =
new size_t[n];
1604 size_t *permB = perm2, *permA = perm;
1606 int nt = omp_get_max_threads();
1611 nseg = (nseg + 1) / 2;
1612 std::swap (permA, permB);
1616 #pragma omp parallel
1617 for (
size_t i = 0; i < n; i++) permA[i] = i;
1619 ArgsortComparator comp = {vals};
1624 #pragma omp parallel for
1625 for (
int t = 0; t < nt; t++) {
1626 size_t i0 = t * n / nt;
1627 size_t i1 = (t + 1) * n / nt;
1628 SegmentS seg = {i0, i1};
1629 std::sort (permA + seg.i0, permA + seg.i1, comp);
1632 int prev_nested = omp_get_nested();
1637 int nseg1 = (nseg + 1) / 2;
1638 int sub_nt = nseg % 2 == 0 ? nt : nt - 1;
1639 int sub_nseg1 = nseg / 2;
1641 #pragma omp parallel for num_threads(nseg1)
1642 for (
int s = 0; s < nseg; s += 2) {
1643 if (s + 1 == nseg) {
1644 memcpy(permB + segs[s].i0, permA + segs[s].i0,
1645 segs[s].len() *
sizeof(
size_t));
1647 int t0 = s * sub_nt / sub_nseg1;
1648 int t1 = (s + 1) * sub_nt / sub_nseg1;
1649 printf(
"merge %d %d, %d threads\n", s, s + 1, t1 - t0);
1650 parallel_merge(permA, permB, segs[s], segs[s + 1],
1654 for (
int s = 0; s < nseg; s += 2)
1655 segs[s / 2] = segs[s];
1657 std::swap (permA, permB);
1659 assert (permA == perm);
1660 omp_set_nested(prev_nested);
1684 static inline void fvec_madd_ref (
size_t n,
const float *a,
1685 float bf,
const float *b,
float *c) {
1686 for (
size_t i = 0; i < n; i++)
1687 c[i] = a[i] + bf * b[i];
1691 static inline void fvec_madd_sse (
size_t n,
const float *a,
1692 float bf,
const float *b,
float *c) {
1694 __m128 bf4 = _mm_set_ps1 (bf);
1695 __m128 * a4 = (__m128*)a;
1696 __m128 * b4 = (__m128*)b;
1697 __m128 * c4 = (__m128*)c;
1700 *c4 = _mm_add_ps (*a4, _mm_mul_ps (bf4, *b4));
1708 float bf,
const float *b,
float *c)
1711 ((((
long)a) | ((
long)b) | ((
long)c)) & 15) == 0)
1712 fvec_madd_sse (n, a, bf, b, c);
1714 fvec_madd_ref (n, a, bf, b, c);
1717 static inline int fvec_madd_and_argmin_ref (
size_t n,
const float *a,
1718 float bf,
const float *b,
float *c) {
1722 for (
size_t i = 0; i < n; i++) {
1723 c[i] = a[i] + bf * b[i];
1732 static inline int fvec_madd_and_argmin_sse (
size_t n,
const float *a,
1733 float bf,
const float *b,
float *c) {
1735 __m128 bf4 = _mm_set_ps1 (bf);
1736 __m128 vmin4 = _mm_set_ps1 (1e20);
1737 __m128i imin4 = _mm_set1_epi32 (-1);
1738 __m128i idx4 = _mm_set_epi32 (3, 2, 1, 0);
1739 __m128i inc4 = _mm_set1_epi32 (4);
1740 __m128 * a4 = (__m128*)a;
1741 __m128 * b4 = (__m128*)b;
1742 __m128 * c4 = (__m128*)c;
1745 __m128 vc4 = _mm_add_ps (*a4, _mm_mul_ps (bf4, *b4));
1747 __m128i mask = (__m128i)_mm_cmpgt_ps (vmin4, vc4);
1750 imin4 = _mm_or_si128 (_mm_and_si128 (mask, idx4),
1751 _mm_andnot_si128 (mask, imin4));
1752 vmin4 = _mm_min_ps (vmin4, vc4);
1756 idx4 = _mm_add_epi32 (idx4, inc4);
1761 idx4 = _mm_shuffle_epi32 (imin4, 3 << 2 | 2);
1762 __m128 vc4 = _mm_shuffle_ps (vmin4, vmin4, 3 << 2 | 2);
1763 __m128i mask = (__m128i)_mm_cmpgt_ps (vmin4, vc4);
1764 imin4 = _mm_or_si128 (_mm_and_si128 (mask, idx4),
1765 _mm_andnot_si128 (mask, imin4));
1766 vmin4 = _mm_min_ps (vmin4, vc4);
1770 idx4 = _mm_shuffle_epi32 (imin4, 1);
1771 __m128 vc4 = _mm_shuffle_ps (vmin4, vmin4, 1);
1772 __m128i mask = (__m128i)_mm_cmpgt_ps (vmin4, vc4);
1773 imin4 = _mm_or_si128 (_mm_and_si128 (mask, idx4),
1774 _mm_andnot_si128 (mask, imin4));
1777 return _mm_extract_epi32 (imin4, 0);
1782 float bf,
const float *b,
float *c)
1785 ((((
long)a) | ((
long)b) | ((
long)c)) & 15) == 0)
1786 return fvec_madd_and_argmin_sse (n, a, bf, b, c);
1788 return fvec_madd_and_argmin_ref (n, a, bf, b, c);
1794 size_t d,
size_t *n,
size_t nmax,
const float *x,
1795 bool verbose,
long seed)
1798 if (*n <= nmax)
return x;
1802 printf (
" Input training set too big (max size is %ld), sampling "
1803 "%ld / %ld vectors\n", nmax, n2, *n);
1805 std::vector<int> subset (*n);
1806 rand_perm (subset.data (), *n, seed);
1807 float *x_subset =
new float[n2 * d];
1808 for (
long i = 0; i < n2; i++)
1809 memcpy (&x_subset[i * d],
1810 &x[subset[i] *
size_t(d)],
random generator that can be used in multithreaded contexts
void knn_L2sqr_base_shift(const float *x, const float *y, size_t d, size_t nx, size_t ny, float_maxheap_array_t *res, const float *base_shift)
RandomGenerator(long seed=1234)
initialize
int km_update_centroids(const float *x, float *centroids, long *assign, size_t d, size_t k, size_t n)
float fvec_L2sqr(const float *x, const float *y, size_t d)
Squared L2 distance between two vectors.
void bincode_hist(size_t n, size_t nbits, const uint8_t *codes, int *hist)
const float * fvecs_maybe_subsample(size_t d, size_t *n, size_t nmax, const float *x, bool verbose, long seed)
void ranklist_handle_ties(int k, long *idx, const float *dis)
float rand_float()
between 0 and 1
void fvec_madd(size_t n, const float *a, float bf, const float *b, float *c)
size_t get_mem_usage_kb()
get current RSS usage in kB
int ivec_hist(size_t n, const int *v, int vmax, int *hist)
compute histogram on v
long rand_long()
random long < 2 ^ 62
int rand_int()
random 31-bit positive integer
size_t ranklist_intersection_size(size_t k1, const long *v1, size_t k2, const long *v2_in)
void pairwise_L2sqr(long d, long nq, const float *xq, long nb, const float *xb, float *dis, long ldq, long ldb, long ldd)
void range_search_inner_product(const float *x, const float *y, size_t d, size_t nx, size_t ny, float radius, RangeSearchResult *res)
same as range_search_L2sqr for the inner product similarity
void knn_inner_product(const float *x, const float *y, size_t d, size_t nx, size_t ny, float_minheap_array_t *res)
double getmillisecs()
ms elapsed since some arbitrary epoch
double imbalance_factor(int k, const int *hist)
same, takes a histogram as input
float fvec_norm_L2sqr(const float *x, size_t d)
void range_search_L2sqr(const float *x, const float *y, size_t d, size_t nx, size_t ny, float radius, RangeSearchResult *res)
void matrix_qr(int m, int n, float *a)
size_t ivec_checksum(size_t n, const int *a)
compute a checksum on a table.
int fvec_madd_and_argmin(size_t n, const float *a, float bf, const float *b, float *c)
void knn_L2sqr(const float *x, const float *y, size_t d, size_t nx, size_t ny, float_maxheap_array_t *res)