Faiss
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends
GpuIndexIVFFlat.cu
1 /**
2  * Copyright (c) 2015-present, Facebook, Inc.
3  * All rights reserved.
4  *
5  * This source code is licensed under the BSD+Patents license found in the
6  * LICENSE file in the root directory of this source tree.
7  */
8 
9 // Copyright 2004-present Facebook. All Rights Reserved.
10 
11 #include "GpuIndexIVFFlat.h"
12 #include "../IndexFlat.h"
13 #include "../IndexIVFFlat.h"
14 #include "GpuIndexFlat.h"
15 #include "GpuResources.h"
16 #include "impl/IVFFlat.cuh"
17 #include "utils/CopyUtils.cuh"
18 #include "utils/DeviceUtils.h"
19 #include "utils/Float16.cuh"
20 
21 #include <limits>
22 
23 namespace faiss { namespace gpu {
24 
26  const faiss::IndexIVFFlat* index,
27  GpuIndexIVFFlatConfig config) :
28  GpuIndexIVF(resources,
29  index->d,
30  index->metric_type,
31  index->nlist,
32  config),
33  ivfFlatConfig_(config),
34  reserveMemoryVecs_(0),
35  index_(nullptr) {
36 #ifndef FAISS_USE_FLOAT16
37  FAISS_THROW_IF_NOT_MSG(!ivfFlatConfig_.useFloat16IVFStorage,
38  "float16 unsupported; need CUDA SDK >= 7.5");
39 #endif
40 
41  copyFrom(index);
42 }
43 
45  int dims,
46  int nlist,
47  faiss::MetricType metric,
48  GpuIndexIVFFlatConfig config) :
49  GpuIndexIVF(resources, dims, metric, nlist, config),
50  ivfFlatConfig_(config),
51  reserveMemoryVecs_(0),
52  index_(nullptr) {
53 
54  // faiss::Index params
55  this->is_trained = false;
56 
57 #ifndef FAISS_USE_FLOAT16
58  FAISS_THROW_IF_NOT_MSG(!ivfFlatConfig_.useFloat16IVFStorage,
59  "float16 unsupported; need CUDA SDK >= 7.5");
60 #endif
61 
62  // We haven't trained ourselves, so don't construct the IVFFlat
63  // index yet
64 }
65 
66 GpuIndexIVFFlat::~GpuIndexIVFFlat() {
67  delete index_;
68 }
69 
70 void
72  reserveMemoryVecs_ = numVecs;
73  if (index_) {
74  index_->reserveMemory(numVecs);
75  }
76 }
77 
78 void
80  DeviceScope scope(device_);
81 
82  GpuIndexIVF::copyFrom(index);
83 
84  // Clear out our old data
85  delete index_;
86  index_ = nullptr;
87 
88  // The other index might not be trained
89  if (!index->is_trained) {
90  return;
91  }
92 
93  // Otherwise, we can populate ourselves from the other index
94  this->is_trained = true;
95 
96  // Copy our lists as well
97  index_ = new IVFFlat(resources_,
99  index->metric_type == faiss::METRIC_L2,
100  ivfFlatConfig_.useFloat16IVFStorage,
101  ivfFlatConfig_.indicesOptions,
102  memorySpace_);
103  InvertedLists *ivf = index->invlists;
104 
105  for (size_t i = 0; i < ivf->nlist; ++i) {
106  auto numVecs = ivf->list_size(i);
107 
108  // GPU index can only support max int entries per list
109  FAISS_THROW_IF_NOT_FMT(numVecs <=
110  (size_t) std::numeric_limits<int>::max(),
111  "GPU inverted list can only support "
112  "%zu entries; %zu found",
113  (size_t) std::numeric_limits<int>::max(),
114  numVecs);
115 
116  index_->addCodeVectorsFromCpu(
117  i, (const float*)(ivf->get_codes(i)),
118  ivf->get_ids(i), numVecs);
119  }
120 }
121 
122 void
124  DeviceScope scope(device_);
125 
126  // We must have the indices in order to copy to ourselves
127  FAISS_THROW_IF_NOT_MSG(ivfFlatConfig_.indicesOptions != INDICES_IVF,
128  "Cannot copy to CPU as GPU index doesn't retain "
129  "indices (INDICES_IVF)");
130 
131  GpuIndexIVF::copyTo(index);
132  index->code_size = this->d * sizeof(float);
133 
135  nlist_, index->code_size);
136 
137  index->replace_invlists(ivf, true);
138 
139  // Copy the inverted lists
140  if (index_) {
141  for (int i = 0; i < nlist_; ++i) {
142  ivf->add_entries (
143  i, index_->getListIndices(i).size(),
144  index_->getListIndices(i).data(),
145  (const uint8_t*)index_->getListVectors(i).data());
146  }
147  }
148 }
149 
150 size_t
152  if (index_) {
153  DeviceScope scope(device_);
154 
155  return index_->reclaimMemory();
156  }
157 
158  return 0;
159 }
160 
161 void
163  if (index_) {
164  DeviceScope scope(device_);
165 
166  index_->reset();
167  this->ntotal = 0;
168  } else {
169  FAISS_ASSERT(this->ntotal == 0);
170  }
171 }
172 
173 void
175  DeviceScope scope(device_);
176 
177  if (this->is_trained) {
178  FAISS_ASSERT(quantizer_->is_trained);
179  FAISS_ASSERT(quantizer_->ntotal == nlist_);
180  FAISS_ASSERT(index_);
181  return;
182  }
183 
184  FAISS_ASSERT(!index_);
185 
186  trainQuantizer_(n, x);
187 
188  // The quantizer is now trained; construct the IVF index
189  index_ = new IVFFlat(resources_,
191  this->metric_type == faiss::METRIC_L2,
192  ivfFlatConfig_.useFloat16IVFStorage,
193  ivfFlatConfig_.indicesOptions,
194  memorySpace_);
195 
196  if (reserveMemoryVecs_) {
197  index_->reserveMemory(reserveMemoryVecs_);
198  }
199 
200  this->is_trained = true;
201 }
202 
203 void
205  const float* x,
206  const Index::idx_t* xids) {
207  // Device is already set in GpuIndex::addInternal_
208  FAISS_ASSERT(index_);
209  FAISS_ASSERT(n > 0);
210 
211  auto stream = resources_->getDefaultStreamCurrentDevice();
212 
213  auto deviceVecs =
214  toDevice<float, 2>(resources_,
215  device_,
216  const_cast<float*>(x),
217  stream,
218  {(int) n, index_->getDim()});
219 
220  static_assert(sizeof(long) == sizeof(Index::idx_t), "size mismatch");
221  auto deviceIds =
222  toDevice<long, 1>(resources_,
223  device_,
224  const_cast<long*>(xids),
225  stream,
226  {(int) n});
227 
228  // Not all vectors may be able to be added (some may contain NaNs
229  // etc)
230  ntotal += index_->classifyAndAddVectors(deviceVecs, deviceIds);
231 }
232 
233 void
235  const float* x,
237  float* distances,
238  faiss::Index::idx_t* labels) const {
239  // Device is already set in GpuIndex::search
240  FAISS_ASSERT(index_);
241  FAISS_ASSERT(n > 0);
242 
243  auto stream = resources_->getDefaultStream(device_);
244 
245  // Make sure arguments are on the device we desire; use temporary
246  // memory allocations to move it if necessary
247  auto devX =
248  toDevice<float, 2>(resources_,
249  device_,
250  const_cast<float*>(x),
251  stream,
252  {(int) n, this->d});
253  auto devDistances =
254  toDevice<float, 2>(resources_,
255  device_,
256  distances,
257  stream,
258  {(int) n, (int) k});
259  auto devLabels =
260  toDevice<faiss::Index::idx_t, 2>(resources_,
261  device_,
262  labels,
263  stream,
264  {(int) n, (int) k});
265 
266  index_->query(devX, nprobe_, k, devDistances, devLabels);
267 
268  // Copy back if necessary
269  fromDevice<float, 2>(devDistances, distances, stream);
270  fromDevice<faiss::Index::idx_t, 2>(devLabels, labels, stream);
271 }
272 
273 
274 } } // namespace
GpuIndexIVFFlat(GpuResources *resources, const faiss::IndexIVFFlat *index, GpuIndexIVFFlatConfig config=GpuIndexIVFFlatConfig())
cudaStream_t getDefaultStreamCurrentDevice()
Calls getDefaultStream with the current device.
void searchImpl_(faiss::Index::idx_t n, const float *x, faiss::Index::idx_t k, float *distances, faiss::Index::idx_t *labels) const override
Called from GpuIndex for search.
int getDim() const
Return the number of dimensions we are indexing.
Definition: IVFBase.cu:100
FlatIndex * getGpuData()
For internal access.
Definition: GpuIndexFlat.h:120
virtual size_t list_size(size_t list_no) const =0
get the size of a list
void copyFrom(const faiss::IndexIVFFlat *index)
void reserveMemory(size_t numVecs)
Reserve GPU memory in our inverted lists for this number of vectors.
Definition: IVFBase.cu:45
void addImpl_(faiss::Index::idx_t n, const float *x, const faiss::Index::idx_t *ids) override
Called from GpuIndex for add/add_with_ids.
void train(Index::idx_t n, const float *x) override
int d
vector dimension
Definition: Index.h:64
int classifyAndAddVectors(Tensor< float, 2, true > &vecs, Tensor< long, 1, true > &indices)
Definition: IVFFlat.cu:129
void copyTo(faiss::IndexIVFFlat *index) const
int nprobe_
Number of inverted list probes per query.
Definition: GpuIndexIVF.h:91
void reserveMemory(size_t numVecs)
Reserve GPU memory in our inverted lists for this number of vectors.
const int device_
The GPU device we are resident on.
Definition: GpuIndex.h:94
GpuResources * resources_
Manages streans, cuBLAS handles and scratch memory for devices.
Definition: GpuIndex.h:91
void copyTo(faiss::IndexIVF *index) const
Copy what we have to the CPU equivalent.
Definition: GpuIndexIVF.cu:149
long idx_t
all indices are this type
Definition: Index.h:62
int nlist_
Number of inverted lists that we manage.
Definition: GpuIndexIVF.h:88
idx_t ntotal
total nb of indexed vectors
Definition: Index.h:65
void addCodeVectorsFromCpu(int listId, const float *vecs, const long *indices, size_t numVecs)
Definition: IVFFlat.cu:54
const MemorySpace memorySpace_
The memory space of our primary storage on the GPU.
Definition: GpuIndex.h:97
GpuIndexFlat * quantizer_
Quantizer for inverted lists.
Definition: GpuIndexIVF.h:94
void query(Tensor< float, 2, true > &queries, int nprobe, int k, Tensor< float, 2, true > &outDistances, Tensor< long, 2, true > &outIndices)
Definition: IVFFlat.cu:287
std::vector< float > getListVectors(int listId) const
Return the vectors of a particular list back to the CPU.
Definition: IVFFlat.cu:353
MetricType metric_type
type of metric this index uses for search
Definition: Index.h:72
InvertedLists * invlists
Acess to the actual data.
Definition: IndexIVF.h:168
std::vector< long > getListIndices(int listId) const
Return the list indices of a particular list back to the CPU.
Definition: IVFBase.cu:207
void copyFrom(const faiss::IndexIVF *index)
Copy what we need from the CPU equivalent.
Definition: GpuIndexIVF.cu:81
bool is_trained
set if the Index does not require training, or if training is done already
Definition: Index.h:69
IndicesOptions indicesOptions
Index storage options for the GPU.
Definition: GpuIndexIVF.h:31
size_t reclaimMemory()
Definition: IVFBase.cu:105
void reset() override
removes all elements from the database.
size_t code_size
code size per vector in bytes
Definition: IndexIVF.h:171
MetricType
Some algorithms support both an inner product version and a L2 search version.
Definition: Index.h:43