/** * Copyright (c) 2015-present, Facebook, Inc. * All rights reserved. * * This source code is licensed under the BSD+Patents license found in the * LICENSE file in the root directory of this source tree. */ // -*- c++ -*- #include "IndexIVFFlat.h" #include #include "utils.h" #include "FaissAssert.h" #include "IndexFlat.h" #include "AuxIndexStructures.h" namespace faiss { /***************************************** * IndexIVFFlat implementation ******************************************/ IndexIVFFlat::IndexIVFFlat (Index * quantizer, size_t d, size_t nlist, MetricType metric): IndexIVF (quantizer, d, nlist, sizeof(float) * d, metric) { code_size = sizeof(float) * d; } void IndexIVFFlat::add_with_ids (idx_t n, const float * x, const long *xids) { add_core (n, x, xids, nullptr); } void IndexIVFFlat::add_core (idx_t n, const float * x, const long *xids, const long *precomputed_idx) { FAISS_THROW_IF_NOT (is_trained); assert (invlists); FAISS_THROW_IF_NOT_MSG (!(maintain_direct_map && xids), "cannot have direct map and add with ids"); const long * idx; ScopeDeleter del; if (precomputed_idx) { idx = precomputed_idx; } else { long * idx0 = new long [n]; del.set (idx0); quantizer->assign (n, x, idx0); idx = idx0; } long n_add = 0; for (size_t i = 0; i < n; i++) { long id = xids ? xids[i] : ntotal + i; long list_no = idx [i]; if (list_no < 0) continue; const float *xi = x + i * d; size_t offset = invlists->add_entry ( list_no, id, (const uint8_t*) xi); if (maintain_direct_map) direct_map.push_back (list_no << 32 | offset); n_add++; } if (verbose) { printf("IndexIVFFlat::add_core: added %ld / %ld vectors\n", n_add, n); } ntotal += n_add; } namespace { template void search_knn_for_ivf (const IndexIVFFlat & ivf, size_t nx, const float * x, const long * keys, HeapArray * res, const IVFSearchParameters *params) { long nprobe = params ? params->nprobe : ivf.nprobe; long max_codes = params ? params->max_codes : ivf.max_codes; const size_t k = res->k; size_t nlistv = 0, ndis = 0; size_t d = ivf.d; #pragma omp parallel for reduction(+: nlistv, ndis) for (size_t i = 0; i < nx; i++) { const float * xi = x + i * d; const long * keysi = keys + i * nprobe; float * __restrict simi = res->get_val (i); long * __restrict idxi = res->get_ids (i); heap_heapify (k, simi, idxi); size_t nscan = 0; for (size_t ik = 0; ik < nprobe; ik++) { long key = keysi[ik]; /* select the list */ if (key < 0) { // not enough centroids for multiprobe continue; } FAISS_THROW_IF_NOT_FMT ( key < (long) ivf.nlist, "Invalid key=%ld at ik=%ld nlist=%ld\n", key, ik, ivf.nlist); nlistv++; size_t list_size = ivf.invlists->list_size(key); const float * list_vecs = (const float*)ivf.invlists->get_codes (key); const Index::idx_t * ids = store_pairs ? nullptr : ivf.invlists->get_ids (key); for (size_t j = 0; j < list_size; j++) { const float * yj = list_vecs + d * j; float dis = metric == METRIC_INNER_PRODUCT ? fvec_inner_product (xi, yj, d) : fvec_L2sqr (xi, yj, d); if (C::cmp (simi[0], dis)) { heap_pop (k, simi, idxi); long id = store_pairs ? (key << 32 | j) : ids[j]; heap_push (k, simi, idxi, dis, id); } } nscan += list_size; if (max_codes && nscan >= max_codes) break; } ndis += nscan; heap_reorder (k, simi, idxi); } indexIVF_stats.nq += nx; indexIVF_stats.nlist += nlistv; indexIVF_stats.ndis += ndis; } } // anonymous namespace void IndexIVFFlat::search_preassigned (idx_t n, const float *x, idx_t k, const idx_t *idx, const float * /* coarse_dis */, float *distances, idx_t *labels, bool store_pairs, const IVFSearchParameters *params) const { if (metric_type == METRIC_INNER_PRODUCT) { float_minheap_array_t res = { size_t(n), size_t(k), labels, distances}; if (store_pairs) { search_knn_for_ivf > (*this, n, x, idx, &res, params); } else { search_knn_for_ivf > (*this, n, x, idx, &res, params); } } else if (metric_type == METRIC_L2) { float_maxheap_array_t res = { size_t(n), size_t(k), labels, distances}; if (store_pairs) { search_knn_for_ivf > (*this, n, x, idx, &res, params); } else { search_knn_for_ivf > (*this, n, x, idx, &res, params); } } } void IndexIVFFlat::range_search (idx_t nx, const float *x, float radius, RangeSearchResult *result) const { idx_t * keys = new idx_t [nx * nprobe]; ScopeDeleter del (keys); quantizer->assign (nx, x, keys, nprobe); #pragma omp parallel { RangeSearchPartialResult pres(result); for (size_t i = 0; i < nx; i++) { const float * xi = x + i * d; const long * keysi = keys + i * nprobe; RangeSearchPartialResult::QueryResult & qres = pres.new_result (i); for (size_t ik = 0; ik < nprobe; ik++) { long key = keysi[ik]; /* select the list */ if (key < 0 || key >= (long) nlist) { fprintf (stderr, "Invalid key=%ld at ik=%ld nlist=%ld\n", key, ik, nlist); throw; } const size_t list_size = invlists->list_size(key); const float * list_vecs = (const float*)invlists->get_codes (key); const Index::idx_t * ids = invlists->get_ids (key); for (size_t j = 0; j < list_size; j++) { const float * yj = list_vecs + d * j; if (metric_type == METRIC_L2) { float disij = fvec_L2sqr (xi, yj, d); if (disij < radius) { qres.add (disij, ids[j]); } } else if (metric_type == METRIC_INNER_PRODUCT) { float disij = fvec_inner_product(xi, yj, d); if (disij > radius) { qres.add (disij, ids[j]); } } } } } pres.finalize (); } } void IndexIVFFlat::update_vectors (int n, idx_t *new_ids, const float *x) { FAISS_THROW_IF_NOT (maintain_direct_map); FAISS_THROW_IF_NOT (is_trained); std::vector assign (n); quantizer->assign (n, x, assign.data()); for (size_t i = 0; i < n; i++) { idx_t id = new_ids[i]; FAISS_THROW_IF_NOT_MSG (0 <= id && id < ntotal, "id to update out of range"); { // remove old one long dm = direct_map[id]; long ofs = dm & 0xffffffff; long il = dm >> 32; size_t l = invlists->list_size (il); if (ofs != l - 1) { // move l - 1 to ofs long id2 = invlists->get_single_id (il, l - 1); direct_map[id2] = (il << 32) | ofs; invlists->update_entry (il, ofs, id2, invlists->get_single_code (il, l - 1)); } invlists->resize (il, l - 1); } { // insert new one long il = assign[i]; size_t l = invlists->list_size (il); long dm = (il << 32) | l; direct_map[id] = dm; invlists->add_entry (il, id, (const uint8_t*)(x + i * d)); } } } void IndexIVFFlat::reconstruct_from_offset (long list_no, long offset, float* recons) const { memcpy (recons, invlists->get_single_code (list_no, offset), code_size); } /***************************************** * IndexIVFFlatDedup implementation ******************************************/ IndexIVFFlatDedup::IndexIVFFlatDedup ( Index * quantizer, size_t d, size_t nlist_, MetricType metric_type): IndexIVFFlat (quantizer, d, nlist_, metric_type) {} // from Python's stringobject.c static uint64_t hash_bytes (const uint8_t *bytes, long n) { const uint8_t *p = bytes; uint64_t x = (uint64_t)(*p) << 7; long len = n; while (--len >= 0) { x = (1000003*x) ^ *p++; } x ^= n; return x; } void IndexIVFFlatDedup::train(idx_t n, const float* x) { std::unordered_map map; float * x2 = new float [n * d]; ScopeDeleter del (x2); long n2 = 0; for (long i = 0; i < n; i++) { uint64_t hash = hash_bytes((uint8_t *)(x + i * d), code_size); if (map.count(hash) && !memcmp (x2 + map[hash] * d, x + i * d, code_size)) { // is duplicate, skip } else { map [hash] = n2; memcpy (x2 + n2 * d, x + i * d, code_size); n2 ++; } } if (verbose) { printf ("IndexIVFFlatDedup::train: train on %ld points after dedup " "(was %ld points)\n", n2, n); } IndexIVFFlat::train (n2, x2); } void IndexIVFFlatDedup::add_with_ids( idx_t na, const float* x, const long* xids) { FAISS_THROW_IF_NOT (is_trained); assert (invlists); FAISS_THROW_IF_NOT_MSG ( !maintain_direct_map, "IVFFlatDedup not implemented with direct_map"); long * idx = new long [na]; ScopeDeleter del (idx); quantizer->assign (na, x, idx); long n_add = 0, n_dup = 0; // TODO make a omp loop with this for (size_t i = 0; i < na; i++) { idx_t id = xids ? xids[i] : ntotal + i; long list_no = idx [i]; if (list_no < 0) { continue; } const float *xi = x + i * d; // search if there is already an entry with that id const uint8_t * codes = invlists->get_codes (list_no); long n = invlists->list_size (list_no); long offset = -1; for (long o = 0; o < n; o++) { if (!memcmp (codes + o * code_size, xi, code_size)) { offset = o; break; } } if (offset == -1) { // not found invlists->add_entry (list_no, id, (const uint8_t*) xi); } else { // mark equivalence idx_t id2 = invlists->get_single_id (list_no, offset); std::pair pair (id2, id); instances.insert (pair); n_dup ++; } n_add++; } if (verbose) { printf("IndexIVFFlat::add_with_ids: added %ld / %ld vectors" " (out of which %ld are duplicates)\n", n_add, na, n_dup); } ntotal += n_add; } void IndexIVFFlatDedup::search_preassigned ( idx_t n, const float *x, idx_t k, const idx_t *assign, const float *centroid_dis, float *distances, idx_t *labels, bool store_pairs, const IVFSearchParameters *params) const { FAISS_THROW_IF_NOT_MSG ( !store_pairs, "store_pairs not supported in IVFDedup"); IndexIVFFlat::search_preassigned (n, x, k, assign, centroid_dis, distances, labels, false, params); std::vector labels2 (k); std::vector dis2 (k); for (long i = 0; i < n; i++) { idx_t *labels1 = labels + i * k; float *dis1 = distances + i * k; long j = 0; for (; j < k; j++) { if (instances.find (labels1[j]) != instances.end ()) { // a duplicate: special handling break; } } if (j < k) { // there are duplicates, special handling long j0 = j; long rp = j; while (j < k) { auto range = instances.equal_range (labels1[rp]); float dis = dis1[rp]; labels2[j] = labels1[rp]; dis2[j] = dis; j ++; for (auto it = range.first; j < k && it != range.second; ++it) { labels2[j] = it->second; dis2[j] = dis; j++; } rp++; } memcpy (labels1 + j0, labels2.data() + j0, sizeof(labels1[0]) * (k - j0)); memcpy (dis1 + j0, dis2.data() + j0, sizeof(dis2[0]) * (k - j0)); } } } long IndexIVFFlatDedup::remove_ids(const IDSelector& sel) { std::unordered_map replace; std::vector > toadd; for (auto it = instances.begin(); it != instances.end(); ) { if (sel.is_member(it->first)) { // then we erase this entry if (!sel.is_member(it->second)) { // if the second is not erased if (replace.count(it->first) == 0) { replace[it->first] = it->second; } else { // remember we should add an element std::pair new_entry ( replace[it->first], it->second); toadd.push_back(new_entry); } } it = instances.erase(it); } else { if (sel.is_member(it->second)) { it = instances.erase(it); } else { ++it; } } } instances.insert (toadd.begin(), toadd.end()); // mostly copied from IndexIVF.cpp FAISS_THROW_IF_NOT_MSG (!maintain_direct_map, "direct map remove not implemented"); std::vector toremove(nlist); #pragma omp parallel for for (long i = 0; i < nlist; i++) { long l0 = invlists->list_size (i), l = l0, j = 0; const idx_t *idsi = invlists->get_ids (i); while (j < l) { if (sel.is_member (idsi[j])) { if (replace.count(idsi[j]) == 0) { l--; invlists->update_entry ( i, j, invlists->get_single_id (i, l), invlists->get_single_code (i, l)); } else { invlists->update_entry ( i, j, replace[idsi[j]], invlists->get_single_code (i, j)); j++; } } else { j++; } } toremove[i] = l0 - l; } // this will not run well in parallel on ondisk because of possible shrinks long nremove = 0; for (long i = 0; i < nlist; i++) { if (toremove[i] > 0) { nremove += toremove[i]; invlists->resize( i, invlists->list_size(i) - toremove[i]); } } ntotal -= nremove; return nremove; } void IndexIVFFlatDedup::range_search( idx_t , const float* , float , RangeSearchResult* ) const { FAISS_THROW_MSG ("not implemented"); } void IndexIVFFlatDedup::update_vectors (int , idx_t *, const float *) { FAISS_THROW_MSG ("not implemented"); } void IndexIVFFlatDedup::reconstruct_from_offset ( long , long , float* ) const { FAISS_THROW_MSG ("not implemented"); } } // namespace faiss