/** * Copyright (c) 2015-present, Facebook, Inc. * All rights reserved. * * This source code is licensed under the CC-by-NC license found in the * LICENSE file in the root directory of this source tree. */ // Copyright 2004-present Facebook. All Rights Reserved. // -*- c++ -*- #ifndef FAISS_PRODUCT_QUANTIZER_H #define FAISS_PRODUCT_QUANTIZER_H #include #include #include "Clustering.h" #include "Heap.h" namespace faiss { /** Product Quantizer. Implemented only for METRIC_L2 */ struct ProductQuantizer { size_t d; ///< size of the input vectors size_t M; ///< number of subquantizers size_t nbits; ///< number of bits per quantization index // values derived from the above size_t dsub; ///< dimensionality of each subvector size_t byte_per_idx; ///< nb bytes per code component (1 or 2) size_t code_size; ///< byte per indexed vector size_t ksub; ///< number of centroids for each subquantizer bool verbose; ///< verbose during training? /// initialization enum train_type_t { Train_default, Train_hot_start, ///< the centroids are already initialized Train_shared, ///< share dictionary accross PQ segments Train_hypercube, ///< intialize centroids with nbits-D hypercube Train_hypercube_pca, ///< intialize centroids with nbits-D hypercube }; train_type_t train_type; ClusteringParameters cp; ///< parameters used during clustering /// Centroid table, size M * ksub * dsub std::vector centroids; /// return the centroids associated with subvector m float * get_centroids (size_t m, size_t i) { return ¢roids [(m * ksub + i) * dsub]; } const float * get_centroids (size_t m, size_t i) const { return ¢roids [(m * ksub + i) * dsub]; } // Train the product quantizer on a set of points. A clustering // can be set on input to define non-default clustering parameters void train (int n, const float *x); ProductQuantizer(size_t d, /* dimensionality of the input vectors */ size_t M, /* number of subquantizers */ size_t nbits); /* number of bit per subvector index */ ProductQuantizer (); /// compute derived values when d, M and nbits have been set void set_derived_values (); /// Define the centroids for subquantizer m void set_params (const float * centroids, int m); /// Quantize one vector with the product quantizer void compute_code (const float * x, uint8_t * code) const ; /// same as compute_code for several vectors void compute_codes (const float * x, uint8_t * codes, size_t n) const ; /// decode a vector from a given code (or n vectors if third argument) void decode (const uint8_t *code, float *x) const; void decode (const uint8_t *code, float *x, size_t n) const; /// If we happen to have the distance tables precomputed, this is /// more efficient to compute the codes. void compute_code_from_distance_table (const float *tab, uint8_t *code) const; /** Compute distance table for one vector. * * The distance table for x = [x_0 x_1 .. x_(M-1)] is a M * ksub * matrix that contains * * dis_table (m, j) = || x_m - c_(m, j)||^2 * for m = 0..M-1 and j = 0 .. ksub - 1 * * where c_(m, j) is the centroid no j of sub-quantizer m. * * @param x input vector size d * @param dis_table output table, size M * ksub */ void compute_distance_table (const float * x, float * dis_table) const; void compute_inner_prod_table (const float * x, float * dis_table) const; /** compute distance table for several vectors * @param nx nb of input vectors * @param x input vector size nx * d * @param dis_table output table, size nx * M * ksub */ void compute_distance_tables (size_t nx, const float * x, float * dis_tables) const; void compute_inner_prod_tables (size_t nx, const float * x, float * dis_tables) const; /** perform a search (L2 distance) * @param x query vectors, size nx * d * @param nx nb of queries * @param codes database codes, size ncodes * byte_per_idx * @param ncodes nb of nb vectors * @param res heap array to store results (nh == nx) * @param init_finalize_heap initialize heap (input) and sort (output)? */ void search (const float * x, size_t nx, const uint8_t * codes, const size_t ncodes, float_maxheap_array_t *res, bool init_finalize_heap = true) const; /** same as search, but with inner product similarity */ void search_ip (const float * x, size_t nx, const uint8_t * codes, const size_t ncodes, float_minheap_array_t *res, bool init_finalize_heap = true) const; /// Symmetric Distance Table std::vector sdc_table; // intitialize the SDC table from the centroids void compute_sdc_table (); void search_sdc (const uint8_t * qcodes, size_t nq, const uint8_t * bcodes, const size_t ncodes, float_maxheap_array_t * res, bool init_finalize_heap = true) const; }; } // namespace faiss #endif