# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import faiss import numpy as np d = 64 # dimension nb = 100000 # database size nq = 10000 # nb of queries np.random.seed(1234) # make reproducible xb = np.random.random((nb, d)).astype('float32') # 64-dim *nb queries xb[:, 0] += np.arange(nb) / 1000. xq = np.random.random((nq, d)).astype('float32') xq[:, 0] += np.arange(nq) / 1000. m = 8 # 8 specifies that the number of sub-vector is 8 k = 4 # number of dimension in etracted vector n_bit = 4 # 4 specifies that each sub-vector is encoded as 4 bits bbs = 32 # build block size ( bbs % 32 == 0 ) for PQ index = faiss.IndexPQFastScan(d, m, n_bit, faiss.METRIC_L2, bbs) # construct FastScan Index assert not index.is_trained index.train(xb) # Train vectors data index within mockup database assert index.is_trained index.add(xb) D, I = index.search(xb[:5], k) # sanity check print(I) print(D) index.nprobe = 10 # make comparable with experiment above D, I = index.search(xq, k) # search print(I[-5:]) # neighbors of the 5 last queries