11 #include "L2Select.cuh"
12 #include "../../FaissAssert.h"
14 #include "../utils/DeviceUtils.h"
15 #include "../utils/MathOperators.cuh"
16 #include "../utils/Pair.cuh"
17 #include "../utils/Reductions.cuh"
18 #include "../utils/Select.cuh"
19 #include "../utils/Tensor.cuh"
20 #include "../utils/StaticUtils.h"
22 namespace faiss {
namespace gpu {
25 template <
typename T,
int kRowsPerBlock,
int kBlockSize>
26 __global__
void l2SelectMin1(Tensor<T, 2, true> productDistances,
27 Tensor<T, 1, true> centroidDistances,
28 Tensor<T, 2, true> outDistances,
29 Tensor<int, 2, true> outIndices) {
31 Pair<T, int> threadMin[kRowsPerBlock];
32 __shared__ Pair<T, int> blockMin[kRowsPerBlock * (kBlockSize / kWarpSize)];
34 T distance[kRowsPerBlock];
37 for (
int i = 0; i < kRowsPerBlock; ++i) {
38 threadMin[i].k = Limits<T>::getMax();
43 int rowStart = blockIdx.x * kRowsPerBlock;
46 bool endRow = (blockIdx.x == gridDim.x - 1);
49 if (productDistances.getSize(0) % kRowsPerBlock == 0) {
55 for (
int row = rowStart; row < productDistances.getSize(0); ++row) {
56 for (
int col = threadIdx.x; col < productDistances.getSize(1);
58 distance[0] = Math<T>::add(centroidDistances[col],
59 productDistances[row][col]);
61 if (Math<T>::lt(distance[0], threadMin[0].k)) {
62 threadMin[0].k = distance[0];
69 blockReduceAll<Pair<T, int>, Min<Pair<T, int> >,
false,
false>(
70 threadMin[0], Min<Pair<T, int> >(), blockMin);
72 if (threadIdx.x == 0) {
73 outDistances[row][0] = threadMin[0].k;
74 outIndices[row][0] = threadMin[0].v;
80 threadMin[0].k = Limits<T>::getMax();
84 for (
int col = threadIdx.x; col < productDistances.getSize(1);
86 T centroidDistance = centroidDistances[col];
89 for (
int row = 0; row < kRowsPerBlock; ++row) {
90 distance[row] = productDistances[rowStart + row][col];
94 for (
int row = 0; row < kRowsPerBlock; ++row) {
95 distance[row] = Math<T>::add(distance[row], centroidDistance);
99 for (
int row = 0; row < kRowsPerBlock; ++row) {
100 if (Math<T>::lt(distance[row], threadMin[row].k)) {
101 threadMin[row].k = distance[row];
102 threadMin[row].v = col;
108 blockReduceAll<kRowsPerBlock, Pair<T, int>, Min<Pair<T, int> >,
false,
false>(
109 threadMin, Min<Pair<T, int> >(), blockMin);
111 if (threadIdx.x == 0) {
113 for (
int row = 0; row < kRowsPerBlock; ++row) {
114 outDistances[rowStart + row][0] = threadMin[row].k;
115 outIndices[rowStart + row][0] = threadMin[row].v;
122 template <
typename T,
int NumWarpQ,
int NumThreadQ,
int ThreadsPerBlock>
123 __global__
void l2SelectMinK(Tensor<T, 2, true> productDistances,
124 Tensor<T, 1, true> centroidDistances,
125 Tensor<T, 2, true> outDistances,
126 Tensor<int, 2, true> outIndices,
129 constexpr
int kNumWarps = ThreadsPerBlock / kWarpSize;
131 __shared__ T smemK[kNumWarps * NumWarpQ];
132 __shared__
int smemV[kNumWarps * NumWarpQ];
134 BlockSelect<T, int, false, Comparator<T>,
135 NumWarpQ, NumThreadQ, ThreadsPerBlock>
136 heap(initK, -1, smemK, smemV, k);
138 int row = blockIdx.x;
141 int limit = utils::roundDown(productDistances.getSize(1), kWarpSize);
144 for (; i < limit; i += blockDim.x) {
145 T v = Math<T>::add(centroidDistances[i],
146 productDistances[row][i]);
150 if (i < productDistances.getSize(1)) {
151 T v = Math<T>::add(centroidDistances[i],
152 productDistances[row][i]);
153 heap.addThreadQ(v, i);
157 for (
int i = threadIdx.x; i < k; i += blockDim.x) {
158 outDistances[row][i] = smemK[i];
159 outIndices[row][i] = smemV[i];
164 template <
typename T>
165 void runL2SelectMin(Tensor<T, 2, true>& productDistances,
166 Tensor<T, 1, true>& centroidDistances,
167 Tensor<T, 2, true>& outDistances,
168 Tensor<int, 2, true>& outIndices,
170 cudaStream_t stream) {
171 FAISS_ASSERT(productDistances.getSize(0) == outDistances.getSize(0));
172 FAISS_ASSERT(productDistances.getSize(0) == outIndices.getSize(0));
173 FAISS_ASSERT(centroidDistances.getSize(0) == productDistances.getSize(1));
174 FAISS_ASSERT(outDistances.getSize(1) == k);
175 FAISS_ASSERT(outIndices.getSize(1) == k);
176 FAISS_ASSERT(k <= 1024);
179 constexpr
int kThreadsPerBlock = 256;
180 constexpr
int kRowsPerBlock = 8;
182 auto block = dim3(kThreadsPerBlock);
183 auto grid = dim3(utils::divUp(outDistances.getSize(0), kRowsPerBlock));
185 l2SelectMin1<T, kRowsPerBlock, kThreadsPerBlock>
186 <<<grid, block, 0, stream>>>(productDistances, centroidDistances,
187 outDistances, outIndices);
189 constexpr
int kThreadsPerBlock = 128;
191 auto block = dim3(kThreadsPerBlock);
192 auto grid = dim3(outDistances.getSize(0));
194 #define RUN_L2_SELECT(NUM_WARP_Q, NUM_THREAD_Q) \
196 l2SelectMinK<T, NUM_WARP_Q, NUM_THREAD_Q, kThreadsPerBlock> \
197 <<<grid, block, 0, stream>>>(productDistances, centroidDistances, \
198 outDistances, outIndices, \
199 k, Limits<T>::getMax()); \
203 RUN_L2_SELECT(32, 2);
204 }
else if (k <= 64) {
205 RUN_L2_SELECT(64, 3);
206 }
else if (k <= 128) {
207 RUN_L2_SELECT(128, 3);
208 }
else if (k <= 256) {
209 RUN_L2_SELECT(256, 4);
210 }
else if (k <= 512) {
211 RUN_L2_SELECT(512, 8);
212 }
else if (k <= 1024) {
213 RUN_L2_SELECT(1024, 8);
222 void runL2SelectMin(Tensor<float, 2, true>& productDistances,
223 Tensor<float, 1, true>& centroidDistances,
224 Tensor<float, 2, true>& outDistances,
225 Tensor<int, 2, true>& outIndices,
227 cudaStream_t stream) {
228 runL2SelectMin<float>(productDistances,
236 #ifdef FAISS_USE_FLOAT16
237 void runL2SelectMin(Tensor<half, 2, true>& productDistances,
238 Tensor<half, 1, true>& centroidDistances,
239 Tensor<half, 2, true>& outDistances,
240 Tensor<int, 2, true>& outIndices,
242 cudaStream_t stream) {
243 runL2SelectMin<half>(productDistances,