faiss/demos/demo_imi_flat.cpp

156 lines
4.8 KiB
C++

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <random>
#include <sys/time.h>
#include <faiss/IndexFlat.h>
#include <faiss/IndexIVFFlat.h>
#include <faiss/IndexPQ.h>
double elapsed() {
struct timeval tv;
gettimeofday(&tv, nullptr);
return tv.tv_sec + tv.tv_usec * 1e-6;
}
int main() {
double t0 = elapsed();
// dimension of the vectors to index
int d = 128;
// size of the database we plan to index
size_t nb = 1000 * 1000;
// make a set of nt training vectors in the unit cube
// (could be the database)
size_t nt = 100 * 1000;
//---------------------------------------------------------------
// Define the core quantizer
// We choose a multiple inverted index for faster training with less data
// and because it usually offers best accuracy/speed trade-offs
//
// We here assume that its lifespan of this coarse quantizer will cover the
// lifespan of the inverted-file quantizer IndexIVFFlat below
// With dynamic allocation, one may give the responsibility to free the
// quantizer to the inverted-file index (with attribute do_delete_quantizer)
//
// Note: a regular clustering algorithm would be defined as:
// faiss::IndexFlatL2 coarse_quantizer (d);
//
// Use nhash=2 subquantizers used to define the product coarse quantizer
// Number of bits: we will have 2^nbits_coarse centroids per subquantizer
// meaning (2^12)^nhash distinct inverted lists
size_t nhash = 2;
size_t nbits_subq = int(log2(nb + 1) / 2); // good choice in general
size_t ncentroids = 1 << (nhash * nbits_subq); // total # of centroids
faiss::MultiIndexQuantizer coarse_quantizer(d, nhash, nbits_subq);
printf("IMI (%ld,%ld): %ld virtual centroids (target: %ld base vectors)",
nhash,
nbits_subq,
ncentroids,
nb);
// the coarse quantizer should not be dealloced before the index
// 4 = nb of bytes per code (d must be a multiple of this)
// 8 = nb of bits per sub-code (almost always 8)
faiss::MetricType metric = faiss::METRIC_L2; // can be METRIC_INNER_PRODUCT
faiss::IndexIVFFlat index(&coarse_quantizer, d, ncentroids, metric);
index.quantizer_trains_alone = true;
// define the number of probes. 2048 is for high-dim, overkilled in practice
// Use 4-1024 depending on the trade-off speed accuracy that you want
index.nprobe = 2048;
std::mt19937 rng;
std::uniform_real_distribution<> distrib;
{ // training
printf("[%.3f s] Generating %ld vectors in %dD for training\n",
elapsed() - t0,
nt,
d);
std::vector<float> trainvecs(nt * d);
for (size_t i = 0; i < nt * d; i++) {
trainvecs[i] = distrib(rng);
}
printf("[%.3f s] Training the index\n", elapsed() - t0);
index.verbose = true;
index.train(nt, trainvecs.data());
}
size_t nq;
std::vector<float> queries;
{ // populating the database
printf("[%.3f s] Building a dataset of %ld vectors to index\n",
elapsed() - t0,
nb);
std::vector<float> database(nb * d);
for (size_t i = 0; i < nb * d; i++) {
database[i] = distrib(rng);
}
printf("[%.3f s] Adding the vectors to the index\n", elapsed() - t0);
index.add(nb, database.data());
// remember a few elements from the database as queries
int i0 = 1234;
int i1 = 1244;
nq = i1 - i0;
queries.resize(nq * d);
for (int i = i0; i < i1; i++) {
for (int j = 0; j < d; j++) {
queries[(i - i0) * d + j] = database[i * d + j];
}
}
}
{ // searching the database
int k = 5;
printf("[%.3f s] Searching the %d nearest neighbors "
"of %ld vectors in the index\n",
elapsed() - t0,
k,
nq);
std::vector<faiss::idx_t> nns(k * nq);
std::vector<float> dis(k * nq);
index.search(nq, queries.data(), k, dis.data(), nns.data());
printf("[%.3f s] Query results (vector ids, then distances):\n",
elapsed() - t0);
for (int i = 0; i < nq; i++) {
printf("query %2d: ", i);
for (int j = 0; j < k; j++) {
printf("%7ld ", nns[j + i * k]);
}
printf("\n dis: ");
for (int j = 0; j < k; j++) {
printf("%7g ", dis[j + i * k]);
}
printf("\n");
}
}
return 0;
}