faiss/benchs/bench_cppcontrib_sa_decode.cpp

1701 lines
64 KiB
C++

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <omp.h>
#include <algorithm>
#include <chrono>
#include <iostream>
#include <memory>
#include <random>
#include <thread>
#include <tuple>
#include <vector>
#include <faiss/Index.h>
#include <faiss/Index2Layer.h>
#include <faiss/IndexIVFPQ.h>
#include <faiss/IndexPQ.h>
#include <faiss/index_factory.h>
#include <faiss/IndexRowwiseMinMax.h>
#include <faiss/cppcontrib/SaDecodeKernels.h>
// train a dataset
std::tuple<std::shared_ptr<faiss::Index>, std::vector<uint8_t>> trainDataset(
const std::vector<float>& input,
const uint64_t n,
const uint64_t d,
const std::string& description) {
//
omp_set_num_threads(std::thread::hardware_concurrency());
// train an index
auto index = std::shared_ptr<faiss::Index>(
faiss::index_factory((int)d, description.c_str()));
index->train((int)n, input.data());
// encode
const size_t codeSize = index->sa_code_size();
std::vector<uint8_t> encodedData(n * codeSize);
index->sa_encode(n, input.data(), encodedData.data());
return std::make_tuple(std::move(index), std::move(encodedData));
}
// generate a dataset
std::vector<float> generate(const size_t n, const size_t d) {
std::vector<float> data(n * d);
std::minstd_rand rng(345);
std::uniform_real_distribution<float> ux(0, 1);
//
for (size_t k = 0; k < n; k++) {
for (size_t j = 0; j < d; j++) {
data[k * d + j] = ux(rng);
}
}
return data;
}
double getError(
const uint64_t n,
const uint64_t d,
const std::vector<float>& v1,
const std::vector<float>& v2) {
double error = 0;
for (uint64_t i = 0; i < n; i++) {
double localError = 0;
for (uint64_t j = 0; j < d; j++) {
double q = v1[i * d + j] - v2[i * d + j];
localError += q * q;
}
error += localError;
}
return error;
}
// a timer
struct StopWatch {
using timepoint_t = std::chrono::time_point<std::chrono::steady_clock>;
timepoint_t Start;
//
StopWatch() {
Start = std::chrono::steady_clock::now();
}
//
double elapsed() const {
const auto now = std::chrono::steady_clock::now();
std::chrono::duration<double> elapsed = now - Start;
return elapsed.count();
}
};
//
bool testIfIVFPQ(
const faiss::Index* const index,
const float** pqCoarseCentroidsQ,
const float** pqFineCentroidsQ) {
if (pqFineCentroidsQ == nullptr || pqCoarseCentroidsQ == nullptr) {
return false;
}
const faiss::IndexIVFPQ* const indexQ =
dynamic_cast<const faiss::IndexIVFPQ*>(index);
if (indexQ == nullptr) {
return false;
}
const auto coarseIndexQ =
dynamic_cast<const faiss::IndexFlatCodes*>(indexQ->quantizer);
if (coarseIndexQ == nullptr) {
return false;
}
*pqFineCentroidsQ = indexQ->pq.centroids.data();
*pqCoarseCentroidsQ =
reinterpret_cast<const float*>(coarseIndexQ->codes.data());
return true;
}
bool testIfResidualPQ(
const faiss::Index* const index,
const float** pqCoarseCentroidsQ,
const float** pqFineCentroidsQ) {
if (pqFineCentroidsQ == nullptr || pqCoarseCentroidsQ == nullptr) {
return false;
}
const faiss::Index2Layer* const indexQ =
dynamic_cast<const faiss::Index2Layer*>(index);
if (indexQ == nullptr) {
return false;
}
const auto coarseIndexQ = dynamic_cast<const faiss::MultiIndexQuantizer*>(
indexQ->q1.quantizer);
if (coarseIndexQ == nullptr) {
return false;
}
*pqFineCentroidsQ = indexQ->pq.centroids.data();
*pqCoarseCentroidsQ = coarseIndexQ->pq.centroids.data();
return true;
}
//
template <typename T>
static void verifyIndex2LevelDecoder(
const uint64_t n,
const uint64_t d,
const std::string& description,
const std::shared_ptr<faiss::Index>& index,
const std::vector<uint8_t>& encodedData,
const uint64_t nIterations) {
//
const float* pqFineCentroidsQ = nullptr;
const float* pqCoarseCentroidsQ = nullptr;
//
testIfIVFPQ(index.get(), &pqCoarseCentroidsQ, &pqFineCentroidsQ);
testIfResidualPQ(index.get(), &pqCoarseCentroidsQ, &pqFineCentroidsQ);
//
const size_t codeSize = index->sa_code_size();
// initialize the random engine
std::default_random_engine rng(123);
std::uniform_real_distribution<float> u(0, 1);
// use 1 thread
omp_set_num_threads(1);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// sequential order
{
std::vector<float> outputFaiss(n * d, 0);
std::vector<float> outputKernel1(n * d, 0);
// faiss
StopWatch swFaiss;
for (uint64_t iter = 0; iter < nIterations; iter++) {
index->sa_decode(n, encodedData.data(), outputFaiss.data());
}
double timeFaiss = swFaiss.elapsed();
// kernels
StopWatch swKernel;
for (int iter = 0; iter < nIterations; iter++) {
for (uint64_t i = 0; i < n; i++) {
T::store(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + i * codeSize,
outputKernel1.data() + i * d);
}
}
double timeKernel = swKernel.elapsed();
// evaluate the error
double error = getError(n, d, outputFaiss, outputKernel1);
std::cout << description << "\t" << n << "\t" << d << "\tstore_seq\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel
<< "\t" << error << std::endl;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// random order
// generate a random order of points
std::uniform_int_distribution<uint64_t> un(0, n - 1);
std::vector<uint64_t> pointIncidesToDecode(nIterations * n, 0);
for (uint64_t i = 0; i < nIterations * n; i++) {
pointIncidesToDecode[i] = un(rng);
}
{
std::vector<float> outputFaiss(n * d, 0);
std::vector<float> outputKernel1(n * d, 0);
// faiss
StopWatch swFaiss;
for (uint64_t iter = 0; iter < nIterations; iter++) {
for (uint64_t i = 0; i < n; i++) {
const auto pointIdx = pointIncidesToDecode[i + iter * n];
index->sa_decode(
1,
encodedData.data() + pointIdx * codeSize,
outputFaiss.data() + i * d);
}
}
const double timeFaiss = swFaiss.elapsed();
// kernels
StopWatch swKernel;
for (uint64_t iter = 0; iter < nIterations; iter++) {
for (uint64_t i = 0; i < n; i++) {
const auto pointIdx = pointIncidesToDecode[i + iter * n];
T::store(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + pointIdx * codeSize,
outputKernel1.data() + i * d);
}
}
const double timeKernel = swKernel.elapsed();
// evaluate the error
const double error = getError(n, d, outputFaiss, outputKernel1);
std::cout << description << "\t" << n << "\t" << d << "\tstore_rnd\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel
<< "\t" << error << std::endl;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// random accumulate
{
std::vector<float> outputFaiss(n * d, 0);
std::vector<float> outputKernel1(n * d, 0);
std::vector<float> outputKernel2(n * d, 0);
std::vector<float> outputKernel2u(n * d, 0);
std::vector<float> outputKernel3(n * d, 0);
std::vector<float> outputKernel3u(n * d, 0);
// a temporary buffer for faiss
std::vector<float> tempFaiss(d, 0);
// random weights
std::vector<float> weights(nIterations * n, 0);
for (uint64_t i = 0; i < nIterations * n; i++) {
weights[i] = u(rng);
}
// faiss
StopWatch swFaiss;
for (uint64_t i = 0; i < n; i++) {
for (uint64_t iter = 0; iter < nIterations; iter++) {
const auto pointIdx =
pointIncidesToDecode[i * nIterations + iter];
const auto weight = weights[i * nIterations + iter];
index->sa_decode(
1,
encodedData.data() + pointIdx * codeSize,
tempFaiss.data());
for (uint64_t j = 0; j < d; j++)
outputFaiss[i * d + j] += weight * tempFaiss[j];
}
}
const double timeFaiss = swFaiss.elapsed();
// kernels: accum 1 point
StopWatch swKernel1;
for (uint64_t i = 0; i < n; i++) {
for (uint64_t iter = 0; iter < nIterations; iter++) {
const auto pointIdx =
pointIncidesToDecode[i * nIterations + iter];
const auto weight = weights[i * nIterations + iter];
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + pointIdx * codeSize,
weight,
outputKernel1.data() + i * d);
}
}
const double timeKernel1 = swKernel1.elapsed();
// evaluate the error
const double error1 = getError(n, d, outputFaiss, outputKernel1);
std::cout << description << "\t" << n << "\t" << d << "\taccum_rnd\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel1
<< "\t" << error1 << std::endl;
// kernels: accum 2 points, shared centroids
StopWatch swKernel2;
for (uint64_t i = 0; i < n; i++) {
for (uint64_t iter = 0; iter < nIterations; iter += 2) {
const auto pointIdx0 =
pointIncidesToDecode[i * nIterations + iter + 0];
const auto weight0 = weights[i * nIterations + iter + 0];
const auto pointIdx1 =
pointIncidesToDecode[i * nIterations + iter + 1];
const auto weight1 = weights[i * nIterations + iter + 1];
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + pointIdx0 * codeSize,
weight0,
encodedData.data() + pointIdx1 * codeSize,
weight1,
outputKernel2.data() + i * d);
}
}
const double timeKernel2 = swKernel2.elapsed();
// evaluate the error
const double error2 = getError(n, d, outputFaiss, outputKernel2);
std::cout << description << "\t" << n << "\t" << d << "\taccum2_rnd\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel2
<< "\t" << error2 << std::endl;
// kernels: accum 2 points, unique centroids
StopWatch swKernel2u;
for (uint64_t i = 0; i < n; i++) {
for (uint64_t iter = 0; iter < nIterations; iter += 2) {
const auto pointIdx0 =
pointIncidesToDecode[i * nIterations + iter + 0];
const auto weight0 = weights[i * nIterations + iter + 0];
const auto pointIdx1 =
pointIncidesToDecode[i * nIterations + iter + 1];
const auto weight1 = weights[i * nIterations + iter + 1];
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + pointIdx0 * codeSize,
weight0,
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + pointIdx1 * codeSize,
weight1,
outputKernel2u.data() + i * d);
}
}
const double timeKernel2u = swKernel2u.elapsed();
// evaluate the error
const double error2u = getError(n, d, outputFaiss, outputKernel2u);
std::cout << description << "\t" << n << "\t" << d << "\taccum2u_rnd\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel2u
<< "\t" << error2u << std::endl;
// kernels: accum 3 points, shared centroids
StopWatch swKernel3;
for (uint64_t i = 0; i < n; i++) {
for (uint64_t iter = 0; iter < nIterations; iter += 3) {
const auto pointIdx0 =
pointIncidesToDecode[i * nIterations + iter + 0];
const auto weight0 = weights[i * nIterations + iter + 0];
const auto pointIdx1 =
pointIncidesToDecode[i * nIterations + iter + 1];
const auto weight1 = weights[i * nIterations + iter + 1];
const auto pointIdx2 =
pointIncidesToDecode[i * nIterations + iter + 2];
const auto weight2 = weights[i * nIterations + iter + 2];
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + pointIdx0 * codeSize,
weight0,
encodedData.data() + pointIdx1 * codeSize,
weight1,
encodedData.data() + pointIdx2 * codeSize,
weight2,
outputKernel3.data() + i * d);
}
}
const double timeKernel3 = swKernel3.elapsed();
// evaluate the error
const double error3 = getError(n, d, outputFaiss, outputKernel3);
std::cout << description << "\t" << n << "\t" << d << "\taccum3_rnd\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel3
<< "\t" << error3 << std::endl;
// kernels: accum 3 points, unique centroids
StopWatch swKernel3u;
for (uint64_t i = 0; i < n; i++) {
for (uint64_t iter = 0; iter < nIterations; iter += 3) {
const auto pointIdx0 =
pointIncidesToDecode[i * nIterations + iter + 0];
const auto weight0 = weights[i * nIterations + iter + 0];
const auto pointIdx1 =
pointIncidesToDecode[i * nIterations + iter + 1];
const auto weight1 = weights[i * nIterations + iter + 1];
const auto pointIdx2 =
pointIncidesToDecode[i * nIterations + iter + 2];
const auto weight2 = weights[i * nIterations + iter + 2];
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + pointIdx0 * codeSize,
weight0,
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + pointIdx1 * codeSize,
weight1,
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + pointIdx2 * codeSize,
weight2,
outputKernel3u.data() + i * d);
}
}
const double timeKernel3u = swKernel3u.elapsed();
// evaluate the error
const double error3u = getError(n, d, outputFaiss, outputKernel3u);
std::cout << description << "\t" << n << "\t" << d << "\taccum3u_rnd\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel3u
<< "\t" << error3u << std::endl;
}
}
//
template <typename T>
static void verifyMinMaxIndex2LevelDecoder(
const uint64_t n,
const uint64_t d,
const std::string& description,
const std::shared_ptr<faiss::Index>& index,
const std::vector<uint8_t>& encodedData,
const uint64_t nIterations) {
//
const float* pqFineCentroidsQ = nullptr;
const float* pqCoarseCentroidsQ = nullptr;
// extract an index that is wrapped with IndexRowwiseMinMaxBase
const std::shared_ptr<faiss::IndexRowwiseMinMaxBase> indexMinMax =
std::dynamic_pointer_cast<faiss::IndexRowwiseMinMaxBase>(index);
auto subIndex = indexMinMax->index;
//
testIfIVFPQ(subIndex, &pqCoarseCentroidsQ, &pqFineCentroidsQ);
testIfResidualPQ(subIndex, &pqCoarseCentroidsQ, &pqFineCentroidsQ);
//
const size_t codeSize = index->sa_code_size();
// initialize the random engine
std::default_random_engine rng(123);
std::uniform_real_distribution<float> u(0, 1);
// use 1 thread
omp_set_num_threads(1);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// sequential order
{
std::vector<float> outputFaiss(n * d, 0);
std::vector<float> outputKernel1(n * d, 0);
// faiss
StopWatch swFaiss;
for (uint64_t iter = 0; iter < nIterations; iter++) {
index->sa_decode(n, encodedData.data(), outputFaiss.data());
}
double timeFaiss = swFaiss.elapsed();
// kernels
StopWatch swKernel;
for (int iter = 0; iter < nIterations; iter++) {
for (uint64_t i = 0; i < n; i++) {
T::store(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + i * codeSize,
outputKernel1.data() + i * d);
}
}
double timeKernel = swKernel.elapsed();
// evaluate the error
double error = getError(n, d, outputFaiss, outputKernel1);
std::cout << description << "\t" << n << "\t" << d << "\tstore_seq\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel
<< "\t" << error << std::endl;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// random order
// generate a random order of points
std::uniform_int_distribution<uint64_t> un(0, n - 1);
std::vector<uint64_t> pointIncidesToDecode(nIterations * n, 0);
for (uint64_t i = 0; i < nIterations * n; i++) {
pointIncidesToDecode[i] = un(rng);
}
{
std::vector<float> outputFaiss(n * d, 0);
std::vector<float> outputKernel1(n * d, 0);
// faiss
StopWatch swFaiss;
for (uint64_t iter = 0; iter < nIterations; iter++) {
for (uint64_t i = 0; i < n; i++) {
const auto pointIdx = pointIncidesToDecode[i + iter * n];
index->sa_decode(
1,
encodedData.data() + pointIdx * codeSize,
outputFaiss.data() + i * d);
}
}
const double timeFaiss = swFaiss.elapsed();
// kernels
StopWatch swKernel;
for (uint64_t iter = 0; iter < nIterations; iter++) {
for (uint64_t i = 0; i < n; i++) {
const auto pointIdx = pointIncidesToDecode[i + iter * n];
T::store(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + pointIdx * codeSize,
outputKernel1.data() + i * d);
}
}
const double timeKernel = swKernel.elapsed();
// evaluate the error
const double error = getError(n, d, outputFaiss, outputKernel1);
std::cout << description << "\t" << n << "\t" << d << "\tstore_rnd\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel
<< "\t" << error << std::endl;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// random accumulate
{
std::vector<float> outputFaiss(n * d, 0);
std::vector<float> outputKernel1(n * d, 0);
std::vector<float> outputKernel2(n * d, 0);
std::vector<float> outputKernel2u(n * d, 0);
std::vector<float> outputKernel3(n * d, 0);
std::vector<float> outputKernel3u(n * d, 0);
// a temporary buffer for faiss
std::vector<float> tempFaiss(d, 0);
// random weights
std::vector<float> weights(nIterations * n, 0);
for (uint64_t i = 0; i < nIterations * n; i++) {
weights[i] = u(rng);
}
// faiss
StopWatch swFaiss;
for (uint64_t i = 0; i < n; i++) {
for (uint64_t iter = 0; iter < nIterations; iter++) {
const auto pointIdx =
pointIncidesToDecode[i * nIterations + iter];
const auto weight = weights[i * nIterations + iter];
index->sa_decode(
1,
encodedData.data() + pointIdx * codeSize,
tempFaiss.data());
for (uint64_t j = 0; j < d; j++) {
outputFaiss[i * d + j] += weight * tempFaiss[j];
}
}
}
const double timeFaiss = swFaiss.elapsed();
// kernels: accum 1 point
StopWatch swKernel1;
for (uint64_t i = 0; i < n; i++) {
float outputAccumMin = 0;
for (uint64_t iter = 0; iter < nIterations; iter++) {
const auto pointIdx =
pointIncidesToDecode[i * nIterations + iter];
const auto weight = weights[i * nIterations + iter];
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + pointIdx * codeSize,
weight,
outputKernel1.data() + i * d,
outputAccumMin);
}
for (uint64_t j = 0; j < d; j++) {
outputKernel1[i * d + j] += outputAccumMin;
}
}
const double timeKernel1 = swKernel1.elapsed();
// evaluate the error
const double error1 = getError(n, d, outputFaiss, outputKernel1);
std::cout << description << "\t" << n << "\t" << d << "\taccum_rnd\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel1
<< "\t" << error1 << std::endl;
// kernels: accum 2 points, shared centroids
StopWatch swKernel2;
for (uint64_t i = 0; i < n; i++) {
float outputAccumMin = 0;
for (uint64_t iter = 0; iter < nIterations; iter += 2) {
const auto pointIdx0 =
pointIncidesToDecode[i * nIterations + iter + 0];
const auto weight0 = weights[i * nIterations + iter + 0];
const auto pointIdx1 =
pointIncidesToDecode[i * nIterations + iter + 1];
const auto weight1 = weights[i * nIterations + iter + 1];
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + pointIdx0 * codeSize,
weight0,
encodedData.data() + pointIdx1 * codeSize,
weight1,
outputKernel2.data() + i * d,
outputAccumMin);
}
for (uint64_t j = 0; j < d; j++) {
outputKernel2[i * d + j] += outputAccumMin;
}
}
const double timeKernel2 = swKernel2.elapsed();
// evaluate the error
const double error2 = getError(n, d, outputFaiss, outputKernel2);
std::cout << description << "\t" << n << "\t" << d << "\taccum2_rnd\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel2
<< "\t" << error2 << std::endl;
// kernels: accum 2 points, unique centroids
StopWatch swKernel2u;
for (uint64_t i = 0; i < n; i++) {
float outputAccumMin = 0;
for (uint64_t iter = 0; iter < nIterations; iter += 2) {
const auto pointIdx0 =
pointIncidesToDecode[i * nIterations + iter + 0];
const auto weight0 = weights[i * nIterations + iter + 0];
const auto pointIdx1 =
pointIncidesToDecode[i * nIterations + iter + 1];
const auto weight1 = weights[i * nIterations + iter + 1];
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + pointIdx0 * codeSize,
weight0,
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + pointIdx1 * codeSize,
weight1,
outputKernel2u.data() + i * d,
outputAccumMin);
}
for (uint64_t j = 0; j < d; j++) {
outputKernel2u[i * d + j] += outputAccumMin;
}
}
const double timeKernel2u = swKernel2u.elapsed();
// evaluate the error
const double error2u = getError(n, d, outputFaiss, outputKernel2u);
std::cout << description << "\t" << n << "\t" << d << "\taccum2u_rnd\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel2u
<< "\t" << error2u << std::endl;
// kernels: accum 3 points, shared centroids
StopWatch swKernel3;
for (uint64_t i = 0; i < n; i++) {
float outputAccumMin = 0;
for (uint64_t iter = 0; iter < nIterations; iter += 3) {
const auto pointIdx0 =
pointIncidesToDecode[i * nIterations + iter + 0];
const auto weight0 = weights[i * nIterations + iter + 0];
const auto pointIdx1 =
pointIncidesToDecode[i * nIterations + iter + 1];
const auto weight1 = weights[i * nIterations + iter + 1];
const auto pointIdx2 =
pointIncidesToDecode[i * nIterations + iter + 2];
const auto weight2 = weights[i * nIterations + iter + 2];
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + pointIdx0 * codeSize,
weight0,
encodedData.data() + pointIdx1 * codeSize,
weight1,
encodedData.data() + pointIdx2 * codeSize,
weight2,
outputKernel3.data() + i * d,
outputAccumMin);
}
for (uint64_t j = 0; j < d; j++) {
outputKernel3[i * d + j] += outputAccumMin;
}
}
const double timeKernel3 = swKernel3.elapsed();
// evaluate the error
const double error3 = getError(n, d, outputFaiss, outputKernel3);
std::cout << description << "\t" << n << "\t" << d << "\taccum3_rnd\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel3
<< "\t" << error3 << std::endl;
// kernels: accum 3 points, unique centroids
StopWatch swKernel3u;
for (uint64_t i = 0; i < n; i++) {
float outputAccumMin = 0;
for (uint64_t iter = 0; iter < nIterations; iter += 3) {
const auto pointIdx0 =
pointIncidesToDecode[i * nIterations + iter + 0];
const auto weight0 = weights[i * nIterations + iter + 0];
const auto pointIdx1 =
pointIncidesToDecode[i * nIterations + iter + 1];
const auto weight1 = weights[i * nIterations + iter + 1];
const auto pointIdx2 =
pointIncidesToDecode[i * nIterations + iter + 2];
const auto weight2 = weights[i * nIterations + iter + 2];
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + pointIdx0 * codeSize,
weight0,
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + pointIdx1 * codeSize,
weight1,
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + pointIdx2 * codeSize,
weight2,
outputKernel3u.data() + i * d,
outputAccumMin);
}
for (uint64_t j = 0; j < d; j++) {
outputKernel3u[i * d + j] += outputAccumMin;
}
}
const double timeKernel3u = swKernel3u.elapsed();
// evaluate the error
const double error3u = getError(n, d, outputFaiss, outputKernel3u);
std::cout << description << "\t" << n << "\t" << d << "\taccum3u_rnd\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel3u
<< "\t" << error3u << std::endl;
}
}
//
template <typename T>
static void verifyIndexPQDecoder(
const uint64_t n,
const uint64_t d,
const std::string& description,
const std::shared_ptr<faiss::Index>& index,
const std::vector<uint8_t>& encodedData,
const uint64_t nIterations) {
//
const faiss::IndexPQ* const indexQ =
dynamic_cast<const faiss::IndexPQ*>(index.get());
const float* const pqFineCentroidsQ = indexQ->pq.centroids.data();
//
const size_t codeSize = index->sa_code_size();
// initialize the random engine
std::default_random_engine rng(123);
std::uniform_real_distribution<float> u(0, 1);
// use 1 thread
omp_set_num_threads(1);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// sequential order
{
std::vector<float> outputFaiss(n * d, 0);
std::vector<float> outputKernel1(n * d, 0);
// faiss
StopWatch swFaiss;
for (uint64_t iter = 0; iter < nIterations; iter++) {
index->sa_decode(n, encodedData.data(), outputFaiss.data());
}
double timeFaiss = swFaiss.elapsed();
// kernels
StopWatch swKernel;
for (int iter = 0; iter < nIterations; iter++) {
for (uint64_t i = 0; i < n; i++) {
T::store(
pqFineCentroidsQ,
encodedData.data() + i * codeSize,
outputKernel1.data() + i * d);
}
}
double timeKernel = swKernel.elapsed();
// evaluate the error
double error = getError(n, d, outputFaiss, outputKernel1);
std::cout << description << "\t" << n << "\t" << d << "\tstore_seq\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel
<< "\t" << error << std::endl;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// random order
// generate a random order of points
std::uniform_int_distribution<uint64_t> un(0, n - 1);
std::vector<uint64_t> pointIncidesToDecode(nIterations * n, 0);
for (uint64_t i = 0; i < nIterations * n; i++) {
pointIncidesToDecode[i] = un(rng);
}
{
std::vector<float> outputFaiss(n * d, 0);
std::vector<float> outputKernel1(n * d, 0);
// faiss
StopWatch swFaiss;
for (uint64_t iter = 0; iter < nIterations; iter++) {
for (uint64_t i = 0; i < n; i++) {
const auto pointIdx = pointIncidesToDecode[i + iter * n];
index->sa_decode(
1,
encodedData.data() + pointIdx * codeSize,
outputFaiss.data() + i * d);
}
}
const double timeFaiss = swFaiss.elapsed();
// kernels
StopWatch swKernel;
for (uint64_t iter = 0; iter < nIterations; iter++) {
for (uint64_t i = 0; i < n; i++) {
const auto pointIdx = pointIncidesToDecode[i + iter * n];
T::store(
pqFineCentroidsQ,
encodedData.data() + pointIdx * codeSize,
outputKernel1.data() + i * d);
}
}
const double timeKernel = swKernel.elapsed();
// evaluate the error
const double error = getError(n, d, outputFaiss, outputKernel1);
std::cout << description << "\t" << n << "\t" << d << "\tstore_rnd\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel
<< "\t" << error << std::endl;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// random accumulate
{
std::vector<float> outputFaiss(n * d, 0);
std::vector<float> outputKernel1(n * d, 0);
std::vector<float> outputKernel2(n * d, 0);
std::vector<float> outputKernel2u(n * d, 0);
std::vector<float> outputKernel3(n * d, 0);
std::vector<float> outputKernel3u(n * d, 0);
// a temporary buffer for faiss
std::vector<float> tempFaiss(d, 0);
// random weights
std::vector<float> weights(nIterations * n, 0);
for (uint64_t i = 0; i < nIterations * n; i++) {
weights[i] = u(rng);
}
// faiss
StopWatch swFaiss;
for (uint64_t i = 0; i < n; i++) {
for (uint64_t iter = 0; iter < nIterations; iter++) {
const auto pointIdx =
pointIncidesToDecode[i * nIterations + iter];
const auto weight = weights[i * nIterations + iter];
index->sa_decode(
1,
encodedData.data() + pointIdx * codeSize,
tempFaiss.data());
for (uint64_t j = 0; j < d; j++) {
outputFaiss[i * d + j] += weight * tempFaiss[j];
}
}
}
const double timeFaiss = swFaiss.elapsed();
// kernels: accum 1 point
StopWatch swKernel1;
for (uint64_t i = 0; i < n; i++) {
for (uint64_t iter = 0; iter < nIterations; iter++) {
const auto pointIdx =
pointIncidesToDecode[i * nIterations + iter];
const auto weight = weights[i * nIterations + iter];
T::accum(
pqFineCentroidsQ,
encodedData.data() + pointIdx * codeSize,
weight,
outputKernel1.data() + i * d);
}
}
const double timeKernel1 = swKernel1.elapsed();
// evaluate the error
const double error1 = getError(n, d, outputFaiss, outputKernel1);
std::cout << description << "\t" << n << "\t" << d << "\taccum_rnd\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel1
<< "\t" << error1 << std::endl;
// kernels: accum 2 points, shared centroids
StopWatch swKernel2;
for (uint64_t i = 0; i < n; i++) {
for (uint64_t iter = 0; iter < nIterations; iter += 2) {
const auto pointIdx0 =
pointIncidesToDecode[i * nIterations + iter + 0];
const auto weight0 = weights[i * nIterations + iter + 0];
const auto pointIdx1 =
pointIncidesToDecode[i * nIterations + iter + 1];
const auto weight1 = weights[i * nIterations + iter + 1];
T::accum(
pqFineCentroidsQ,
encodedData.data() + pointIdx0 * codeSize,
weight0,
encodedData.data() + pointIdx1 * codeSize,
weight1,
outputKernel2.data() + i * d);
}
}
const double timeKernel2 = swKernel2.elapsed();
// evaluate the error
const double error2 = getError(n, d, outputFaiss, outputKernel2);
std::cout << description << "\t" << n << "\t" << d << "\taccum2_rnd\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel2
<< "\t" << error2 << std::endl;
// kernels: accum 2 points, unique centroids
StopWatch swKernel2u;
for (uint64_t i = 0; i < n; i++) {
for (uint64_t iter = 0; iter < nIterations; iter += 2) {
const auto pointIdx0 =
pointIncidesToDecode[i * nIterations + iter + 0];
const auto weight0 = weights[i * nIterations + iter + 0];
const auto pointIdx1 =
pointIncidesToDecode[i * nIterations + iter + 1];
const auto weight1 = weights[i * nIterations + iter + 1];
T::accum(
pqFineCentroidsQ,
encodedData.data() + pointIdx0 * codeSize,
weight0,
pqFineCentroidsQ,
encodedData.data() + pointIdx1 * codeSize,
weight1,
outputKernel2u.data() + i * d);
}
}
const double timeKernel2u = swKernel2u.elapsed();
// evaluate the error
const double error2u = getError(n, d, outputFaiss, outputKernel2u);
std::cout << description << "\t" << n << "\t" << d << "\taccum2u_rnd\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel2u
<< "\t" << error2u << std::endl;
// kernels: accum 3 points, shared centroids
StopWatch swKernel3;
for (uint64_t i = 0; i < n; i++) {
for (uint64_t iter = 0; iter < nIterations; iter += 3) {
const auto pointIdx0 =
pointIncidesToDecode[i * nIterations + iter + 0];
const auto weight0 = weights[i * nIterations + iter + 0];
const auto pointIdx1 =
pointIncidesToDecode[i * nIterations + iter + 1];
const auto weight1 = weights[i * nIterations + iter + 1];
const auto pointIdx2 =
pointIncidesToDecode[i * nIterations + iter + 2];
const auto weight2 = weights[i * nIterations + iter + 2];
T::accum(
pqFineCentroidsQ,
encodedData.data() + pointIdx0 * codeSize,
weight0,
encodedData.data() + pointIdx1 * codeSize,
weight1,
encodedData.data() + pointIdx2 * codeSize,
weight2,
outputKernel3.data() + i * d);
}
}
const double timeKernel3 = swKernel3.elapsed();
// evaluate the error
const double error3 = getError(n, d, outputFaiss, outputKernel3);
std::cout << description << "\t" << n << "\t" << d << "\taccum3_rnd\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel3
<< "\t" << error3 << std::endl;
// kernels: accum 3 points, unique centroids
StopWatch swKernel3u;
for (uint64_t i = 0; i < n; i++) {
for (uint64_t iter = 0; iter < nIterations; iter += 3) {
const auto pointIdx0 =
pointIncidesToDecode[i * nIterations + iter + 0];
const auto weight0 = weights[i * nIterations + iter + 0];
const auto pointIdx1 =
pointIncidesToDecode[i * nIterations + iter + 1];
const auto weight1 = weights[i * nIterations + iter + 1];
const auto pointIdx2 =
pointIncidesToDecode[i * nIterations + iter + 2];
const auto weight2 = weights[i * nIterations + iter + 2];
T::accum(
pqFineCentroidsQ,
encodedData.data() + pointIdx0 * codeSize,
weight0,
pqFineCentroidsQ,
encodedData.data() + pointIdx1 * codeSize,
weight1,
pqFineCentroidsQ,
encodedData.data() + pointIdx2 * codeSize,
weight2,
outputKernel3u.data() + i * d);
}
}
const double timeKernel3u = swKernel3u.elapsed();
// evaluate the error
const double error3u = getError(n, d, outputFaiss, outputKernel3u);
std::cout << description << "\t" << n << "\t" << d << "\taccum3u_rnd\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel3u
<< "\t" << error3u << std::endl;
}
}
//
template <typename T>
static void verifyMinMaxIndexPQDecoder(
const uint64_t n,
const uint64_t d,
const std::string& description,
const std::shared_ptr<faiss::Index>& index,
const std::vector<uint8_t>& encodedData,
const uint64_t nIterations) {
// extract an index that is wrapped with IndexRowwiseMinMaxBase
const std::shared_ptr<faiss::IndexRowwiseMinMaxBase> indexMinMax =
std::dynamic_pointer_cast<faiss::IndexRowwiseMinMaxBase>(index);
auto subIndex = indexMinMax->index;
//
const faiss::IndexPQ* const indexQ =
dynamic_cast<const faiss::IndexPQ*>(subIndex);
const float* const pqFineCentroidsQ = indexQ->pq.centroids.data();
//
const size_t codeSize = index->sa_code_size();
// initialize the random engine
std::default_random_engine rng(123);
std::uniform_real_distribution<float> u(0, 1);
// use 1 thread
omp_set_num_threads(1);
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// sequential order
{
std::vector<float> outputFaiss(n * d, 0);
std::vector<float> outputKernel1(n * d, 0);
// faiss
StopWatch swFaiss;
for (uint64_t iter = 0; iter < nIterations; iter++) {
index->sa_decode(n, encodedData.data(), outputFaiss.data());
}
double timeFaiss = swFaiss.elapsed();
// kernels
StopWatch swKernel;
for (int iter = 0; iter < nIterations; iter++) {
for (uint64_t i = 0; i < n; i++) {
T::store(
pqFineCentroidsQ,
encodedData.data() + i * codeSize,
outputKernel1.data() + i * d);
}
}
double timeKernel = swKernel.elapsed();
// evaluate the error
double error = getError(n, d, outputFaiss, outputKernel1);
std::cout << description << "\t" << n << "\t" << d << "\tstore_seq\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel
<< "\t" << error << std::endl;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// random order
// generate a random order of points
std::uniform_int_distribution<uint64_t> un(0, n - 1);
std::vector<uint64_t> pointIncidesToDecode(nIterations * n, 0);
for (uint64_t i = 0; i < nIterations * n; i++) {
pointIncidesToDecode[i] = un(rng);
}
{
std::vector<float> outputFaiss(n * d, 0);
std::vector<float> outputKernel1(n * d, 0);
// faiss
StopWatch swFaiss;
for (uint64_t iter = 0; iter < nIterations; iter++) {
for (uint64_t i = 0; i < n; i++) {
const auto pointIdx = pointIncidesToDecode[i + iter * n];
index->sa_decode(
1,
encodedData.data() + pointIdx * codeSize,
outputFaiss.data() + i * d);
}
}
const double timeFaiss = swFaiss.elapsed();
// kernels
StopWatch swKernel;
for (uint64_t iter = 0; iter < nIterations; iter++) {
for (uint64_t i = 0; i < n; i++) {
const auto pointIdx = pointIncidesToDecode[i + iter * n];
T::store(
pqFineCentroidsQ,
encodedData.data() + pointIdx * codeSize,
outputKernel1.data() + i * d);
}
}
const double timeKernel = swKernel.elapsed();
// evaluate the error
const double error = getError(n, d, outputFaiss, outputKernel1);
std::cout << description << "\t" << n << "\t" << d << "\tstore_rnd\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel
<< "\t" << error << std::endl;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// random accumulate
{
std::vector<float> outputFaiss(n * d, 0);
std::vector<float> outputKernel1(n * d, 0);
std::vector<float> outputKernel2(n * d, 0);
std::vector<float> outputKernel2u(n * d, 0);
std::vector<float> outputKernel3(n * d, 0);
std::vector<float> outputKernel3u(n * d, 0);
// a temporary buffer for faiss
std::vector<float> tempFaiss(d, 0);
// random weights
std::vector<float> weights(nIterations * n, 0);
for (uint64_t i = 0; i < nIterations * n; i++) {
weights[i] = u(rng);
}
// faiss
StopWatch swFaiss;
for (uint64_t i = 0; i < n; i++) {
for (uint64_t iter = 0; iter < nIterations; iter++) {
const auto pointIdx =
pointIncidesToDecode[i * nIterations + iter];
const auto weight = weights[i * nIterations + iter];
index->sa_decode(
1,
encodedData.data() + pointIdx * codeSize,
tempFaiss.data());
for (uint64_t j = 0; j < d; j++) {
outputFaiss[i * d + j] += weight * tempFaiss[j];
}
}
}
const double timeFaiss = swFaiss.elapsed();
// kernels: accum 1 point
StopWatch swKernel1;
for (uint64_t i = 0; i < n; i++) {
float outputAccumMin = 0;
for (uint64_t iter = 0; iter < nIterations; iter++) {
const auto pointIdx =
pointIncidesToDecode[i * nIterations + iter];
const auto weight = weights[i * nIterations + iter];
T::accum(
pqFineCentroidsQ,
encodedData.data() + pointIdx * codeSize,
weight,
outputKernel1.data() + i * d,
outputAccumMin);
}
for (uint64_t j = 0; j < d; j++) {
outputKernel1[i * d + j] += outputAccumMin;
}
}
const double timeKernel1 = swKernel1.elapsed();
// evaluate the error
const double error1 = getError(n, d, outputFaiss, outputKernel1);
std::cout << description << "\t" << n << "\t" << d << "\taccum_rnd\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel1
<< "\t" << error1 << std::endl;
// kernels: accum 2 points, shared centroids
StopWatch swKernel2;
for (uint64_t i = 0; i < n; i++) {
float outputAccumMin = 0;
for (uint64_t iter = 0; iter < nIterations; iter += 2) {
const auto pointIdx0 =
pointIncidesToDecode[i * nIterations + iter + 0];
const auto weight0 = weights[i * nIterations + iter + 0];
const auto pointIdx1 =
pointIncidesToDecode[i * nIterations + iter + 1];
const auto weight1 = weights[i * nIterations + iter + 1];
T::accum(
pqFineCentroidsQ,
encodedData.data() + pointIdx0 * codeSize,
weight0,
encodedData.data() + pointIdx1 * codeSize,
weight1,
outputKernel2.data() + i * d,
outputAccumMin);
}
for (uint64_t j = 0; j < d; j++) {
outputKernel2[i * d + j] += outputAccumMin;
}
}
const double timeKernel2 = swKernel2.elapsed();
// evaluate the error
const double error2 = getError(n, d, outputFaiss, outputKernel2);
std::cout << description << "\t" << n << "\t" << d << "\taccum2_rnd\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel2
<< "\t" << error2 << std::endl;
// kernels: accum 2 points, unique centroids
StopWatch swKernel2u;
for (uint64_t i = 0; i < n; i++) {
float outputAccumMin = 0;
for (uint64_t iter = 0; iter < nIterations; iter += 2) {
const auto pointIdx0 =
pointIncidesToDecode[i * nIterations + iter + 0];
const auto weight0 = weights[i * nIterations + iter + 0];
const auto pointIdx1 =
pointIncidesToDecode[i * nIterations + iter + 1];
const auto weight1 = weights[i * nIterations + iter + 1];
T::accum(
pqFineCentroidsQ,
encodedData.data() + pointIdx0 * codeSize,
weight0,
pqFineCentroidsQ,
encodedData.data() + pointIdx1 * codeSize,
weight1,
outputKernel2u.data() + i * d,
outputAccumMin);
}
for (uint64_t j = 0; j < d; j++) {
outputKernel2u[i * d + j] += outputAccumMin;
}
}
const double timeKernel2u = swKernel2u.elapsed();
// evaluate the error
const double error2u = getError(n, d, outputFaiss, outputKernel2u);
std::cout << description << "\t" << n << "\t" << d << "\taccum2u_rnd\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel2u
<< "\t" << error2u << std::endl;
// kernels: accum 3 points, shared centroids
StopWatch swKernel3;
for (uint64_t i = 0; i < n; i++) {
float outputAccumMin = 0;
for (uint64_t iter = 0; iter < nIterations; iter += 3) {
const auto pointIdx0 =
pointIncidesToDecode[i * nIterations + iter + 0];
const auto weight0 = weights[i * nIterations + iter + 0];
const auto pointIdx1 =
pointIncidesToDecode[i * nIterations + iter + 1];
const auto weight1 = weights[i * nIterations + iter + 1];
const auto pointIdx2 =
pointIncidesToDecode[i * nIterations + iter + 2];
const auto weight2 = weights[i * nIterations + iter + 2];
T::accum(
pqFineCentroidsQ,
encodedData.data() + pointIdx0 * codeSize,
weight0,
encodedData.data() + pointIdx1 * codeSize,
weight1,
encodedData.data() + pointIdx2 * codeSize,
weight2,
outputKernel3.data() + i * d,
outputAccumMin);
}
for (uint64_t j = 0; j < d; j++) {
outputKernel3[i * d + j] += outputAccumMin;
}
}
const double timeKernel3 = swKernel3.elapsed();
// evaluate the error
const double error3 = getError(n, d, outputFaiss, outputKernel3);
std::cout << description << "\t" << n << "\t" << d << "\taccum3_rnd\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel3
<< "\t" << error3 << std::endl;
// kernels: accum 3 points, unique centroids
StopWatch swKernel3u;
for (uint64_t i = 0; i < n; i++) {
float outputAccumMin = 0;
for (uint64_t iter = 0; iter < nIterations; iter += 3) {
const auto pointIdx0 =
pointIncidesToDecode[i * nIterations + iter + 0];
const auto weight0 = weights[i * nIterations + iter + 0];
const auto pointIdx1 =
pointIncidesToDecode[i * nIterations + iter + 1];
const auto weight1 = weights[i * nIterations + iter + 1];
const auto pointIdx2 =
pointIncidesToDecode[i * nIterations + iter + 2];
const auto weight2 = weights[i * nIterations + iter + 2];
T::accum(
pqFineCentroidsQ,
encodedData.data() + pointIdx0 * codeSize,
weight0,
pqFineCentroidsQ,
encodedData.data() + pointIdx1 * codeSize,
weight1,
pqFineCentroidsQ,
encodedData.data() + pointIdx2 * codeSize,
weight2,
outputKernel3u.data() + i * d,
outputAccumMin);
}
for (uint64_t j = 0; j < d; j++) {
outputKernel3u[i * d + j] += outputAccumMin;
}
}
const double timeKernel3u = swKernel3u.elapsed();
// evaluate the error
const double error3u = getError(n, d, outputFaiss, outputKernel3u);
std::cout << description << "\t" << n << "\t" << d << "\taccum3u_rnd\t"
<< nIterations << "\t" << timeFaiss << "\t" << timeKernel3u
<< "\t" << error3u << std::endl;
}
}
template <typename T>
void testIndex2LevelDecoder(
const uint64_t n,
const uint64_t d,
const std::string& description,
const uint64_t nIterations) {
auto data = generate(n, d);
std::shared_ptr<faiss::Index> index;
std::vector<uint8_t> encodedData;
std::tie(index, encodedData) = trainDataset(data, n, d, description);
verifyIndex2LevelDecoder<T>(
n, d, description, index, encodedData, nIterations);
}
template <typename T>
void testMinMaxIndex2LevelDecoder(
const uint64_t n,
const uint64_t d,
const std::string& description,
const uint64_t nIterations) {
auto data = generate(n, d);
std::shared_ptr<faiss::Index> index;
std::vector<uint8_t> encodedData;
std::tie(index, encodedData) = trainDataset(data, n, d, description);
verifyMinMaxIndex2LevelDecoder<T>(
n, d, description, index, encodedData, nIterations);
}
template <typename T>
void testIndexPQDecoder(
const uint64_t n,
const uint64_t d,
const std::string& description,
const uint64_t nIterations) {
auto data = generate(n, d);
std::shared_ptr<faiss::Index> index;
std::vector<uint8_t> encodedData;
std::tie(index, encodedData) = trainDataset(data, n, d, description);
verifyIndexPQDecoder<T>(n, d, description, index, encodedData, nIterations);
}
template <typename T>
void testMinMaxIndexPQDecoder(
const uint64_t n,
const uint64_t d,
const std::string& description,
const uint64_t nIterations) {
auto data = generate(n, d);
std::shared_ptr<faiss::Index> index;
std::vector<uint8_t> encodedData;
std::tie(index, encodedData) = trainDataset(data, n, d, description);
verifyMinMaxIndexPQDecoder<T>(
n, d, description, index, encodedData, nIterations);
}
//
int main(int argc, char** argv) {
// 1 MB points
const uint64_t INDEX_SIZE = 65536 * 16;
const uint64_t N_ITERATIONS = 18;
static_assert(
(N_ITERATIONS % 6) == 0, "Number of iterations should be 6*x");
// print the header
auto delim = "\t";
std::cout << "Codec" << delim << "n" << delim << "d" << delim
<< "Experiment" << delim << "Iterations" << delim << "Faiss time"
<< delim << "SADecodeKernel time" << delim << "Error"
<< std::endl;
// The following experiment types are available:
// * store_seq - decode a contiguous block of codes into vectors, one by one
// * store_rnd - decode a contiguous block of codes into vectors in a random
// order
// * accum_rnd - create a linear combination from decoded vectors,
// random order
// * accum2_rnd - create a linear combination from decoded vectors,
// random order, decode 2 codes per call, centroid tables are shared
// * accum2u_rnd - create a linear combination from decoded vectors,
// random order, decode 2 codes per call, centroid tables are not shared
// * accum3_rnd - create a linear combination from decoded vectors,
// random order, decode 3 codes per call, centroid tables are shared
// * accum3u_rnd - create a linear combination from decoded vectors,
// random order, decode 3 codes per call, centroid tables are not shared
//
// It is expected that:
// * store_seq is faster than store_rnd
// * accum2 is faster than accum
// * accum3 is faster than accum2
// test plain PQx8
{
using T = faiss::cppcontrib::IndexPQDecoder<128, 2>;
testIndexPQDecoder<T>(INDEX_SIZE, 128, "PQ64np", N_ITERATIONS);
}
{
using T = faiss::cppcontrib::IndexPQDecoder<128, 4>;
testIndexPQDecoder<T>(INDEX_SIZE, 128, "PQ32np", N_ITERATIONS);
}
{
using T = faiss::cppcontrib::IndexPQDecoder<128, 8>;
testIndexPQDecoder<T>(INDEX_SIZE, 128, "PQ16np", N_ITERATIONS);
}
{
using T = faiss::cppcontrib::IndexPQDecoder<128, 16>;
testIndexPQDecoder<T>(INDEX_SIZE, 128, "PQ8np", N_ITERATIONS);
}
{
using T = faiss::cppcontrib::IndexPQDecoder<128, 32>;
testIndexPQDecoder<T>(INDEX_SIZE, 128, "PQ4np", N_ITERATIONS);
}
// test PQx10
{
using T = faiss::cppcontrib::IndexPQDecoder<128, 2, 10>;
testIndexPQDecoder<T>(INDEX_SIZE, 128, "PQ64x10np", N_ITERATIONS);
}
{
using T = faiss::cppcontrib::IndexPQDecoder<128, 4, 10>;
testIndexPQDecoder<T>(INDEX_SIZE, 128, "PQ32x10np", N_ITERATIONS);
}
{
using T = faiss::cppcontrib::IndexPQDecoder<128, 8, 10>;
testIndexPQDecoder<T>(INDEX_SIZE, 128, "PQ16x10np", N_ITERATIONS);
}
{
using T = faiss::cppcontrib::IndexPQDecoder<128, 16, 10>;
testIndexPQDecoder<T>(INDEX_SIZE, 128, "PQ8x10np", N_ITERATIONS);
}
{
using T = faiss::cppcontrib::IndexPQDecoder<128, 32, 10>;
testIndexPQDecoder<T>(INDEX_SIZE, 128, "PQ4x10np", N_ITERATIONS);
}
// test MinMaxFP16,PQx8
{
using SubT = faiss::cppcontrib::IndexPQDecoder<128, 2>;
using T = faiss::cppcontrib::IndexMinMaxFP16Decoder<SubT>;
testMinMaxIndexPQDecoder<T>(
INDEX_SIZE, 128, "MinMaxFP16,PQ64np", N_ITERATIONS);
}
{
using SubT = faiss::cppcontrib::IndexPQDecoder<128, 4>;
using T = faiss::cppcontrib::IndexMinMaxFP16Decoder<SubT>;
testMinMaxIndexPQDecoder<T>(
INDEX_SIZE, 128, "MinMaxFP16,PQ32np", N_ITERATIONS);
}
{
using SubT = faiss::cppcontrib::IndexPQDecoder<128, 8>;
using T = faiss::cppcontrib::IndexMinMaxFP16Decoder<SubT>;
testMinMaxIndexPQDecoder<T>(
INDEX_SIZE, 128, "MinMaxFP16,PQ16np", N_ITERATIONS);
}
{
using SubT = faiss::cppcontrib::IndexPQDecoder<128, 16>;
using T = faiss::cppcontrib::IndexMinMaxFP16Decoder<SubT>;
testMinMaxIndexPQDecoder<T>(
INDEX_SIZE, 128, "MinMaxFP16,PQ8np", N_ITERATIONS);
}
{
using SubT = faiss::cppcontrib::IndexPQDecoder<128, 32>;
using T = faiss::cppcontrib::IndexMinMaxFP16Decoder<SubT>;
testMinMaxIndexPQDecoder<T>(
INDEX_SIZE, 128, "MinMaxFP16,PQ4np", N_ITERATIONS);
}
// test IVFPQ
{
using T = faiss::cppcontrib::Index2LevelDecoder<128, 128, 2>;
testIndex2LevelDecoder<T>(
INDEX_SIZE, 128, "IVF256,PQ64np", N_ITERATIONS);
}
{
using T = faiss::cppcontrib::Index2LevelDecoder<128, 128, 4>;
testIndex2LevelDecoder<T>(
INDEX_SIZE, 128, "IVF256,PQ32np", N_ITERATIONS);
}
{
using T = faiss::cppcontrib::Index2LevelDecoder<128, 128, 8>;
testIndex2LevelDecoder<T>(
INDEX_SIZE, 128, "IVF256,PQ16np", N_ITERATIONS);
}
{
using T = faiss::cppcontrib::Index2LevelDecoder<128, 128, 16>;
testIndex2LevelDecoder<T>(
INDEX_SIZE, 128, "IVF256,PQ8np", N_ITERATIONS);
}
{
using T = faiss::cppcontrib::Index2LevelDecoder<128, 128, 32>;
testIndex2LevelDecoder<T>(
INDEX_SIZE, 128, "IVF256,PQ4np", N_ITERATIONS);
}
// test Residual,PQ
{
using T = faiss::cppcontrib::Index2LevelDecoder<128, 32, 2>;
testIndex2LevelDecoder<T>(
INDEX_SIZE, 128, "Residual4x8,PQ64", N_ITERATIONS);
}
{
using T = faiss::cppcontrib::Index2LevelDecoder<128, 32, 4>;
testIndex2LevelDecoder<T>(
INDEX_SIZE, 128, "Residual4x8,PQ32", N_ITERATIONS);
}
{
using T = faiss::cppcontrib::Index2LevelDecoder<128, 32, 8>;
testIndex2LevelDecoder<T>(
INDEX_SIZE, 128, "Residual4x8,PQ16", N_ITERATIONS);
}
{
using T = faiss::cppcontrib::Index2LevelDecoder<128, 32, 16>;
testIndex2LevelDecoder<T>(
INDEX_SIZE, 128, "Residual4x8,PQ8", N_ITERATIONS);
}
{
using T = faiss::cppcontrib::Index2LevelDecoder<128, 32, 32>;
testIndex2LevelDecoder<T>(
INDEX_SIZE, 128, "Residual4x8,PQ4", N_ITERATIONS);
}
// test MinMaxFP16,IVFPQ
{
using SubT = faiss::cppcontrib::Index2LevelDecoder<128, 128, 2>;
using T = faiss::cppcontrib::IndexMinMaxFP16Decoder<SubT>;
testMinMaxIndex2LevelDecoder<T>(
INDEX_SIZE, 128, "MinMaxFP16,IVF256,PQ64np", N_ITERATIONS);
}
{
using SubT = faiss::cppcontrib::Index2LevelDecoder<128, 128, 4>;
using T = faiss::cppcontrib::IndexMinMaxFP16Decoder<SubT>;
testMinMaxIndex2LevelDecoder<T>(
INDEX_SIZE, 128, "MinMaxFP16,IVF256,PQ32np", N_ITERATIONS);
}
{
using SubT = faiss::cppcontrib::Index2LevelDecoder<128, 128, 8>;
using T = faiss::cppcontrib::IndexMinMaxFP16Decoder<SubT>;
testMinMaxIndex2LevelDecoder<T>(
INDEX_SIZE, 128, "MinMaxFP16,IVF256,PQ16np", N_ITERATIONS);
}
{
using SubT = faiss::cppcontrib::Index2LevelDecoder<128, 128, 16>;
using T = faiss::cppcontrib::IndexMinMaxFP16Decoder<SubT>;
testMinMaxIndex2LevelDecoder<T>(
INDEX_SIZE, 128, "MinMaxFP16,IVF256,PQ8np", N_ITERATIONS);
}
{
using SubT = faiss::cppcontrib::Index2LevelDecoder<128, 128, 32>;
using T = faiss::cppcontrib::IndexMinMaxFP16Decoder<SubT>;
testMinMaxIndex2LevelDecoder<T>(
INDEX_SIZE, 128, "MinMaxFP16,IVF256,PQ4np", N_ITERATIONS);
}
// test Residual,PQ with unusual bits
{
using T = faiss::cppcontrib::Index2LevelDecoder<128, 128, 2, 16, 10>;
testIndex2LevelDecoder<T>(
INDEX_SIZE, 128, "Residual1x10,PQ64x10", N_ITERATIONS);
}
{
using T = faiss::cppcontrib::Index2LevelDecoder<128, 128, 4, 16, 10>;
testIndex2LevelDecoder<T>(
INDEX_SIZE, 128, "Residual1x10,PQ32x10", N_ITERATIONS);
}
{
using T = faiss::cppcontrib::Index2LevelDecoder<128, 128, 8, 16, 10>;
testIndex2LevelDecoder<T>(
INDEX_SIZE, 128, "Residual1x10,PQ16x10", N_ITERATIONS);
}
{
using T = faiss::cppcontrib::Index2LevelDecoder<128, 128, 16, 16, 10>;
testIndex2LevelDecoder<T>(
INDEX_SIZE, 128, "Residual1x10,PQ8x10", N_ITERATIONS);
}
{
using T = faiss::cppcontrib::Index2LevelDecoder<128, 128, 32, 16, 10>;
testIndex2LevelDecoder<T>(
INDEX_SIZE, 128, "Residual1x10,PQ4x10", N_ITERATIONS);
}
return 0;
}