1006 lines
27 KiB
C++
1006 lines
27 KiB
C++
/**
|
|
* Copyright (c) 2015-present, Facebook, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This source code is licensed under the CC-by-NC license found in the
|
|
* LICENSE file in the root directory of this source tree.
|
|
*/
|
|
|
|
#include "IndexScalarQuantizer.h"
|
|
|
|
#include <cstdio>
|
|
#include <algorithm>
|
|
|
|
#include <omp.h>
|
|
|
|
#include <immintrin.h>
|
|
|
|
#include "utils.h"
|
|
|
|
#include "FaissAssert.h"
|
|
|
|
namespace faiss {
|
|
|
|
/*******************************************************************
|
|
* ScalarQuantizer implementation
|
|
*
|
|
* The main source of complexity is to support combinations of 4
|
|
* variants without incurring runtime tests or virtual function calls:
|
|
*
|
|
* - 4 / 8 bits per code component
|
|
* - uniform / non-uniform
|
|
* - IP / L2 distance search
|
|
* - scalar / AVX distance computation
|
|
*
|
|
* The appropriate Quantizer object is returned via select_quantizer
|
|
* that hides the template mess.
|
|
********************************************************************/
|
|
|
|
#ifdef __AVX__
|
|
#define USE_AVX
|
|
#endif
|
|
|
|
|
|
namespace {
|
|
|
|
typedef Index::idx_t idx_t;
|
|
typedef ScalarQuantizer::QuantizerType QuantizerType;
|
|
typedef ScalarQuantizer::RangeStat RangeStat;
|
|
|
|
|
|
/*******************************************************************
|
|
* Codec: converts between values in [0, 1] and an index in a code
|
|
* array. The "i" parameter is the vector component index (not byte
|
|
* index).
|
|
*/
|
|
|
|
struct Codec8bit {
|
|
|
|
static void encode_component (float x, uint8_t *code, int i) {
|
|
code[i] = (int)(255 * x);
|
|
}
|
|
|
|
static float decode_component (const uint8_t *code, int i) {
|
|
return (code[i] + 0.5f) / 255.0f;
|
|
}
|
|
|
|
#ifdef USE_AVX
|
|
static __m256 decode_8_components (const uint8_t *code, int i) {
|
|
uint64_t c8 = *(uint64_t*)(code + i);
|
|
__m128i c4lo = _mm_cvtepu8_epi32 (_mm_set1_epi32(c8));
|
|
__m128i c4hi = _mm_cvtepu8_epi32 (_mm_set1_epi32(c8 >> 32));
|
|
// __m256i i8 = _mm256_set_m128i(c4lo, c4hi);
|
|
__m256i i8 = _mm256_castsi128_si256 (c4lo);
|
|
i8 = _mm256_insertf128_si256 (i8, c4hi, 1);
|
|
__m256 f8 = _mm256_cvtepi32_ps (i8);
|
|
__m256 half = _mm256_set1_ps (0.5f);
|
|
f8 += half;
|
|
__m256 one_255 = _mm256_set1_ps (1.f / 255.f);
|
|
return f8 * one_255;
|
|
}
|
|
#endif
|
|
};
|
|
|
|
|
|
struct Codec4bit {
|
|
|
|
static void encode_component (float x, uint8_t *code, int i) {
|
|
code [i / 2] |= (int)(x * 15.0) << ((i & 1) << 2);
|
|
}
|
|
|
|
static float decode_component (const uint8_t *code, int i) {
|
|
return (((code[i / 2] >> ((i & 1) << 2)) & 0xf) + 0.5f) / 15.0f;
|
|
}
|
|
|
|
|
|
#ifdef USE_AVX
|
|
static __m256 decode_8_components (const uint8_t *code, int i) {
|
|
uint32_t c4 = *(uint32_t*)(code + (i >> 1));
|
|
uint32_t mask = 0x0f0f0f0f;
|
|
uint32_t c4ev = c4 & mask;
|
|
uint32_t c4od = (c4 >> 4) & mask;
|
|
|
|
// the 8 lower bytes of c8 contain the values
|
|
__m128i c8 = _mm_unpacklo_epi8 (_mm_set1_epi32(c4ev),
|
|
_mm_set1_epi32(c4od));
|
|
__m128i c4lo = _mm_cvtepu8_epi32 (c8);
|
|
__m128i c4hi = _mm_cvtepu8_epi32 (_mm_srli_si128(c8, 4));
|
|
__m256i i8 = _mm256_castsi128_si256 (c4lo);
|
|
i8 = _mm256_insertf128_si256 (i8, c4hi, 1);
|
|
__m256 f8 = _mm256_cvtepi32_ps (i8);
|
|
__m256 half = _mm256_set1_ps (0.5f);
|
|
f8 += half;
|
|
__m256 one_255 = _mm256_set1_ps (1.f / 15.f);
|
|
return f8 * one_255;
|
|
}
|
|
#endif
|
|
};
|
|
|
|
|
|
/*******************************************************************
|
|
* Similarity: gets vector components and computes a similarity wrt. a
|
|
* query vector stored in the object
|
|
*/
|
|
|
|
struct SimilarityL2 {
|
|
const float *y, *yi;
|
|
explicit SimilarityL2 (const float * y): y(y) {}
|
|
|
|
|
|
/******* scalar accumulator *******/
|
|
|
|
float accu;
|
|
|
|
void begin () {
|
|
accu = 0;
|
|
yi = y;
|
|
}
|
|
|
|
void add_component (float x) {
|
|
float tmp = *yi++ - x;
|
|
accu += tmp * tmp;
|
|
}
|
|
|
|
float result () {
|
|
return accu;
|
|
}
|
|
|
|
#ifdef USE_AVX
|
|
/******* AVX accumulator *******/
|
|
|
|
__m256 accu8;
|
|
|
|
void begin_8 () {
|
|
accu8 = _mm256_setzero_ps();
|
|
yi = y;
|
|
}
|
|
|
|
void add_8_components (__m256 x) {
|
|
__m256 yiv = _mm256_loadu_ps (yi);
|
|
yi += 8;
|
|
__m256 tmp = yiv - x;
|
|
accu8 += tmp * tmp;
|
|
}
|
|
|
|
float result_8 () {
|
|
__m256 sum = _mm256_hadd_ps(accu8, accu8);
|
|
__m256 sum2 = _mm256_hadd_ps(sum, sum);
|
|
// now add the 0th and 4th component
|
|
return
|
|
_mm_cvtss_f32 (_mm256_castps256_ps128(sum2)) +
|
|
_mm_cvtss_f32 (_mm256_extractf128_ps(sum2, 1));
|
|
}
|
|
#endif
|
|
};
|
|
|
|
struct SimilarityIP {
|
|
const float *y, *yi;
|
|
const float accu0;
|
|
|
|
/******* scalar accumulator *******/
|
|
|
|
float accu;
|
|
|
|
SimilarityIP (const float * y, float accu0):
|
|
y (y), accu0 (accu0) {}
|
|
|
|
void begin () {
|
|
accu = accu0;
|
|
yi = y;
|
|
}
|
|
|
|
void add_component (float x) {
|
|
accu += *yi++ * x;
|
|
}
|
|
|
|
float result () {
|
|
return accu;
|
|
}
|
|
|
|
#ifdef USE_AVX
|
|
/******* AVX accumulator *******/
|
|
|
|
__m256 accu8;
|
|
|
|
void begin_8 () {
|
|
accu8 = _mm256_setzero_ps();
|
|
yi = y;
|
|
}
|
|
|
|
void add_8_components (__m256 x) {
|
|
__m256 yiv = _mm256_loadu_ps (yi);
|
|
yi += 8;
|
|
accu8 += yiv * x;
|
|
}
|
|
|
|
float result_8 () {
|
|
__m256 sum = _mm256_hadd_ps(accu8, accu8);
|
|
__m256 sum2 = _mm256_hadd_ps(sum, sum);
|
|
// now add the 0th and 4th component
|
|
return
|
|
accu0 +
|
|
_mm_cvtss_f32 (_mm256_castps256_ps128(sum2)) +
|
|
_mm_cvtss_f32 (_mm256_extractf128_ps(sum2, 1));
|
|
}
|
|
#endif
|
|
};
|
|
|
|
|
|
/*******************************************************************
|
|
* templatized distance functions
|
|
*/
|
|
|
|
|
|
template<class Quantizer, class Similarity>
|
|
float compute_distance(const Quantizer & quant, Similarity & sim,
|
|
const uint8_t *code)
|
|
{
|
|
sim.begin();
|
|
for (size_t i = 0; i < quant.d; i++) {
|
|
float xi = quant.reconstruct_component (code, i);
|
|
sim.add_component (xi);
|
|
}
|
|
return sim.result();
|
|
}
|
|
|
|
#ifdef USE_AVX
|
|
template<class Quantizer, class Similarity>
|
|
float compute_distance_8(const Quantizer & quant, Similarity & sim,
|
|
const uint8_t *code)
|
|
{
|
|
sim.begin_8();
|
|
for (size_t i = 0; i < quant.d; i += 8) {
|
|
__m256 xi = quant.reconstruct_8_components (code, i);
|
|
sim.add_8_components (xi);
|
|
}
|
|
return sim.result_8();
|
|
}
|
|
#endif
|
|
|
|
|
|
/*******************************************************************
|
|
* Quantizer range training
|
|
*/
|
|
|
|
static float sqr (float x) {
|
|
return x * x;
|
|
}
|
|
|
|
|
|
void train_Uniform(RangeStat rs, float rs_arg,
|
|
idx_t n, int k, const float *x,
|
|
std::vector<float> & trained)
|
|
{
|
|
trained.resize (2);
|
|
float & vmin = trained[0];
|
|
float & vmax = trained[1];
|
|
|
|
if (rs == ScalarQuantizer::RS_minmax) {
|
|
vmin = HUGE_VAL; vmax = -HUGE_VAL;
|
|
for (size_t i = 0; i < n; i++) {
|
|
if (x[i] < vmin) vmin = x[i];
|
|
if (x[i] > vmax) vmax = x[i];
|
|
}
|
|
float vexp = (vmax - vmin) * rs_arg;
|
|
vmin -= vexp;
|
|
vmax += vexp;
|
|
} else if (rs == ScalarQuantizer::RS_meanstd) {
|
|
double sum = 0, sum2 = 0;
|
|
for (size_t i = 0; i < n; i++) {
|
|
sum += x[i];
|
|
sum2 += x[i] * x[i];
|
|
}
|
|
float mean = sum / n;
|
|
float var = sum2 / n - mean * mean;
|
|
float std = var <= 0 ? 1.0 : sqrt(var);
|
|
|
|
vmin = mean - std * rs_arg ;
|
|
vmax = mean + std * rs_arg ;
|
|
} else if (rs == ScalarQuantizer::RS_quantiles) {
|
|
std::vector<float> x_copy(n);
|
|
memcpy(x_copy.data(), x, n * sizeof(*x));
|
|
// TODO just do a qucikselect
|
|
std::sort(x_copy.begin(), x_copy.end());
|
|
int o = int(rs_arg * n);
|
|
if (o < 0) o = 0;
|
|
if (o > n - o) o = n / 2;
|
|
vmin = x_copy[o];
|
|
vmax = x_copy[n - 1 - o];
|
|
|
|
} else if (rs == ScalarQuantizer::RS_optim) {
|
|
float a, b;
|
|
float sx = 0;
|
|
{
|
|
vmin = HUGE_VAL, vmax = -HUGE_VAL;
|
|
for (size_t i = 0; i < n; i++) {
|
|
if (x[i] < vmin) vmin = x[i];
|
|
if (x[i] > vmax) vmax = x[i];
|
|
sx += x[i];
|
|
}
|
|
b = vmin;
|
|
a = (vmax - vmin) / (k - 1);
|
|
}
|
|
int verbose = false;
|
|
int niter = 2000;
|
|
float last_err = -1;
|
|
int iter_last_err = 0;
|
|
for (int it = 0; it < niter; it++) {
|
|
float sn = 0, sn2 = 0, sxn = 0, err1 = 0;
|
|
|
|
for (idx_t i = 0; i < n; i++) {
|
|
float xi = x[i];
|
|
float ni = floor ((xi - b) / a + 0.5);
|
|
if (ni < 0) ni = 0;
|
|
if (ni >= k) ni = k - 1;
|
|
err1 += sqr (xi - (ni * a + b));
|
|
sn += ni;
|
|
sn2 += ni * ni;
|
|
sxn += ni * xi;
|
|
}
|
|
|
|
if (err1 == last_err) {
|
|
iter_last_err ++;
|
|
if (iter_last_err == 16) break;
|
|
} else {
|
|
last_err = err1;
|
|
iter_last_err = 0;
|
|
}
|
|
|
|
float det = sqr (sn) - sn2 * n;
|
|
|
|
b = (sn * sxn - sn2 * sx) / det;
|
|
a = (sn * sx - n * sxn) / det;
|
|
if (verbose) {
|
|
printf ("it %d, err1=%g \r", it, err1);
|
|
fflush(stdout);
|
|
}
|
|
}
|
|
if (verbose) printf("\n");
|
|
|
|
vmin = b;
|
|
vmax = b + a * (k - 1);
|
|
|
|
} else {
|
|
FAISS_THROW_MSG ("Invalid qtype");
|
|
}
|
|
vmax -= vmin;
|
|
}
|
|
|
|
void train_NonUniform(RangeStat rs, float rs_arg,
|
|
idx_t n, int d, int k, const float *x,
|
|
std::vector<float> & trained)
|
|
{
|
|
trained.resize (2 * d);
|
|
float * vmin = trained.data();
|
|
float * vmax = trained.data() + d;
|
|
if (rs == ScalarQuantizer::RS_minmax) {
|
|
memcpy (vmin, x, sizeof(*x) * d);
|
|
memcpy (vmax, x, sizeof(*x) * d);
|
|
for (size_t i = 1; i < n; i++) {
|
|
const float *xi = x + i * d;
|
|
for (size_t j = 0; j < d; j++) {
|
|
if (xi[j] < vmin[j]) vmin[j] = xi[j];
|
|
if (xi[j] > vmax[j]) vmax[j] = xi[j];
|
|
}
|
|
}
|
|
float *vdiff = vmax;
|
|
for (size_t j = 0; j < d; j++) {
|
|
float vexp = (vmax[j] - vmin[j]) * rs_arg;
|
|
vmin[j] -= vexp;
|
|
vmax[j] += vexp;
|
|
vdiff [j] = vmax[j] - vmin[j];
|
|
}
|
|
} else {
|
|
// transpose
|
|
std::vector<float> xt(n * d);
|
|
for (size_t i = 1; i < n; i++) {
|
|
const float *xi = x + i * d;
|
|
for (size_t j = 0; j < d; j++) {
|
|
xt[j * n + i] = xi[j];
|
|
}
|
|
}
|
|
std::vector<float> trained_d(2);
|
|
#pragma omp parallel for
|
|
for (size_t j = 0; j < d; j++) {
|
|
train_Uniform(rs, rs_arg,
|
|
n, k, xt.data() + j * n,
|
|
trained_d);
|
|
vmin[j] = trained_d[0];
|
|
vmax[j] = trained_d[1];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*******************************************************************
|
|
* Quantizer: normalizes scalar vector components, then passes them
|
|
* through a codec
|
|
*/
|
|
|
|
|
|
|
|
struct Quantizer {
|
|
virtual void encode_vector(const float *x, uint8_t *code) const = 0;
|
|
virtual void decode_vector(const uint8_t *code, float *x) const = 0;
|
|
|
|
virtual float compute_distance_L2 (SimilarityL2 &sim,
|
|
const uint8_t * codes) const = 0;
|
|
virtual float compute_distance_IP (SimilarityIP &sim,
|
|
const uint8_t * codes) const = 0;
|
|
|
|
virtual ~Quantizer() {}
|
|
};
|
|
|
|
|
|
|
|
|
|
template<class Codec>
|
|
struct QuantizerUniform: Quantizer {
|
|
const size_t d;
|
|
const float vmin, vdiff;
|
|
|
|
QuantizerUniform(size_t d, const std::vector<float> &trained):
|
|
d(d), vmin(trained[0]), vdiff(trained[1]) {
|
|
}
|
|
|
|
void encode_vector(const float* x, uint8_t* code) const override {
|
|
for (size_t i = 0; i < d; i++) {
|
|
float xi = (x[i] - vmin) / vdiff;
|
|
if (xi < 0)
|
|
xi = 0;
|
|
if (xi > 1.0)
|
|
xi = 1.0;
|
|
Codec::encode_component(xi, code, i);
|
|
}
|
|
}
|
|
|
|
void decode_vector(const uint8_t* code, float* x) const override {
|
|
for (size_t i = 0; i < d; i++) {
|
|
float xi = Codec::decode_component(code, i);
|
|
x[i] = vmin + xi * vdiff;
|
|
}
|
|
}
|
|
|
|
float reconstruct_component (const uint8_t * code, int i) const
|
|
{
|
|
float xi = Codec::decode_component (code, i);
|
|
return vmin + xi * vdiff;
|
|
}
|
|
|
|
#ifdef USE_AVX
|
|
__m256 reconstruct_8_components (const uint8_t * code, int i) const
|
|
{
|
|
__m256 xi = Codec::decode_8_components (code, i);
|
|
return _mm256_set1_ps(vmin) + xi * _mm256_set1_ps (vdiff);
|
|
}
|
|
#endif
|
|
|
|
float compute_distance_L2(SimilarityL2& sim, const uint8_t* codes)
|
|
const override {
|
|
return compute_distance(*this, sim, codes);
|
|
}
|
|
|
|
float compute_distance_IP(SimilarityIP& sim, const uint8_t* codes)
|
|
const override {
|
|
return compute_distance(*this, sim, codes);
|
|
}
|
|
};
|
|
|
|
#ifdef USE_AVX
|
|
template<class Codec>
|
|
struct QuantizerUniform8: QuantizerUniform<Codec> {
|
|
|
|
QuantizerUniform8 (size_t d, const std::vector<float> &trained):
|
|
QuantizerUniform<Codec> (d, trained) {}
|
|
|
|
float compute_distance_L2(SimilarityL2& sim, const uint8_t* codes)
|
|
const override {
|
|
return compute_distance_8(*this, sim, codes);
|
|
}
|
|
|
|
float compute_distance_IP(SimilarityIP& sim, const uint8_t* codes)
|
|
const override {
|
|
return compute_distance_8(*this, sim, codes);
|
|
}
|
|
};
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
template<class Codec>
|
|
struct QuantizerNonUniform: Quantizer {
|
|
const size_t d;
|
|
const float *vmin, *vdiff;
|
|
|
|
QuantizerNonUniform(size_t d, const std::vector<float> &trained):
|
|
d(d), vmin(trained.data()), vdiff(trained.data() + d) {}
|
|
|
|
void encode_vector(const float* x, uint8_t* code) const override {
|
|
for (size_t i = 0; i < d; i++) {
|
|
float xi = (x[i] - vmin[i]) / vdiff[i];
|
|
if (xi < 0)
|
|
xi = 0;
|
|
if (xi > 1.0)
|
|
xi = 1.0;
|
|
Codec::encode_component(xi, code, i);
|
|
}
|
|
}
|
|
|
|
void decode_vector(const uint8_t* code, float* x) const override {
|
|
for (size_t i = 0; i < d; i++) {
|
|
float xi = Codec::decode_component(code, i);
|
|
x[i] = vmin[i] + xi * vdiff[i];
|
|
}
|
|
}
|
|
|
|
float reconstruct_component (const uint8_t * code, int i) const
|
|
{
|
|
float xi = Codec::decode_component (code, i);
|
|
return vmin[i] + xi * vdiff[i];
|
|
}
|
|
|
|
#ifdef USE_AVX
|
|
__m256 reconstruct_8_components (const uint8_t * code, int i) const
|
|
{
|
|
__m256 xi = Codec::decode_8_components (code, i);
|
|
return _mm256_loadu_ps(vmin + i) + xi * _mm256_loadu_ps (vdiff + i);
|
|
}
|
|
#endif
|
|
|
|
float compute_distance_L2(SimilarityL2& sim, const uint8_t* codes)
|
|
const override {
|
|
return compute_distance(*this, sim, codes);
|
|
}
|
|
|
|
float compute_distance_IP(SimilarityIP& sim, const uint8_t* codes)
|
|
const override {
|
|
return compute_distance(*this, sim, codes);
|
|
}
|
|
};
|
|
|
|
#ifdef USE_AVX
|
|
template<class Codec>
|
|
struct QuantizerNonUniform8: QuantizerNonUniform<Codec> {
|
|
|
|
QuantizerNonUniform8 (size_t d, const std::vector<float> &trained):
|
|
QuantizerNonUniform<Codec> (d, trained) {}
|
|
|
|
float compute_distance_L2(SimilarityL2& sim, const uint8_t* codes)
|
|
const override {
|
|
return compute_distance_8(*this, sim, codes);
|
|
}
|
|
|
|
float compute_distance_IP(SimilarityIP& sim, const uint8_t* codes)
|
|
const override {
|
|
return compute_distance_8(*this, sim, codes);
|
|
}
|
|
};
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
Quantizer *select_quantizer (
|
|
QuantizerType qtype,
|
|
size_t d, const std::vector<float> & trained)
|
|
{
|
|
#ifdef USE_AVX
|
|
if (d % 8 == 0) {
|
|
switch(qtype) {
|
|
case ScalarQuantizer::QT_8bit:
|
|
return new QuantizerNonUniform8<Codec8bit>(d, trained);
|
|
case ScalarQuantizer::QT_4bit:
|
|
return new QuantizerNonUniform8<Codec4bit>(d, trained);
|
|
case ScalarQuantizer::QT_8bit_uniform:
|
|
return new QuantizerUniform8<Codec8bit>(d, trained);
|
|
case ScalarQuantizer::QT_4bit_uniform:
|
|
return new QuantizerUniform8<Codec4bit>(d, trained);
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
switch(qtype) {
|
|
case ScalarQuantizer::QT_8bit:
|
|
return new QuantizerNonUniform<Codec8bit>(d, trained);
|
|
case ScalarQuantizer::QT_4bit:
|
|
return new QuantizerNonUniform<Codec4bit>(d, trained);
|
|
case ScalarQuantizer::QT_8bit_uniform:
|
|
return new QuantizerUniform<Codec8bit>(d, trained);
|
|
case ScalarQuantizer::QT_4bit_uniform:
|
|
return new QuantizerUniform<Codec4bit>(d, trained);
|
|
}
|
|
}
|
|
FAISS_THROW_MSG ("unknown qtype");
|
|
return nullptr;
|
|
}
|
|
|
|
Quantizer *select_quantizer (const ScalarQuantizer &sq)
|
|
{
|
|
return select_quantizer (sq.qtype, sq.d, sq.trained);
|
|
}
|
|
|
|
|
|
} // anonymous namespace
|
|
|
|
|
|
|
|
/*******************************************************************
|
|
* ScalarQuantizer implementation
|
|
********************************************************************/
|
|
|
|
ScalarQuantizer::ScalarQuantizer
|
|
(size_t d, QuantizerType qtype):
|
|
qtype (qtype), rangestat(RS_minmax), rangestat_arg(0), d (d)
|
|
{
|
|
switch (qtype) {
|
|
case QT_8bit: case QT_8bit_uniform:
|
|
code_size = d;
|
|
break;
|
|
case QT_4bit: case QT_4bit_uniform:
|
|
code_size = (d + 1) / 2;
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
ScalarQuantizer::ScalarQuantizer ():
|
|
qtype(QT_8bit),
|
|
rangestat(RS_minmax), rangestat_arg(0), d (0), code_size(0)
|
|
{}
|
|
|
|
void ScalarQuantizer::train (size_t n, const float *x)
|
|
{
|
|
int bit_per_dim =
|
|
qtype == QT_4bit_uniform ? 4 :
|
|
qtype == QT_4bit ? 4 :
|
|
qtype == QT_8bit_uniform ? 8 :
|
|
qtype == QT_8bit ? 8 : -1;
|
|
|
|
switch (qtype) {
|
|
case QT_4bit_uniform: case QT_8bit_uniform:
|
|
train_Uniform (rangestat, rangestat_arg,
|
|
n * d, 1 << bit_per_dim, x, trained);
|
|
break;
|
|
case QT_4bit: case QT_8bit:
|
|
train_NonUniform (rangestat, rangestat_arg,
|
|
n, d, 1 << bit_per_dim, x, trained);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void ScalarQuantizer::compute_codes (const float * x,
|
|
uint8_t * codes,
|
|
size_t n) const
|
|
{
|
|
Quantizer *squant = select_quantizer (*this);
|
|
#pragma omp parallel for
|
|
for (size_t i = 0; i < n; i++)
|
|
squant->encode_vector (x + i * d, codes + i * code_size);
|
|
delete squant;
|
|
}
|
|
|
|
void ScalarQuantizer::decode (const uint8_t *codes, float *x, size_t n) const
|
|
{
|
|
Quantizer *squant = select_quantizer (*this);
|
|
#pragma omp parallel for
|
|
for (size_t i = 0; i < n; i++)
|
|
squant->decode_vector (codes + i * code_size, x + i * d);
|
|
delete squant;
|
|
}
|
|
|
|
/*******************************************************************
|
|
* IndexScalarQuantizer implementation
|
|
********************************************************************/
|
|
|
|
IndexScalarQuantizer::IndexScalarQuantizer
|
|
(int d, ScalarQuantizer::QuantizerType qtype,
|
|
MetricType metric):
|
|
Index(d, metric),
|
|
sq (d, qtype)
|
|
{
|
|
is_trained = false;
|
|
code_size = sq.code_size;
|
|
}
|
|
|
|
|
|
IndexScalarQuantizer::IndexScalarQuantizer ():
|
|
IndexScalarQuantizer(0, ScalarQuantizer::QT_8bit)
|
|
{}
|
|
|
|
void IndexScalarQuantizer::train(idx_t n, const float* x)
|
|
{
|
|
sq.train(n, x);
|
|
is_trained = true;
|
|
}
|
|
|
|
void IndexScalarQuantizer::add(idx_t n, const float* x)
|
|
{
|
|
FAISS_THROW_IF_NOT (is_trained);
|
|
codes.resize ((n + ntotal) * code_size);
|
|
sq.compute_codes (x, &codes[ntotal * code_size], n);
|
|
ntotal += n;
|
|
}
|
|
|
|
void IndexScalarQuantizer::search(
|
|
idx_t n,
|
|
const float* x,
|
|
idx_t k,
|
|
float* distances,
|
|
idx_t* labels) const
|
|
{
|
|
Quantizer *squant = select_quantizer (sq);
|
|
ScopeDeleter1<Quantizer> del(squant);
|
|
FAISS_THROW_IF_NOT (is_trained);
|
|
|
|
if (metric_type == METRIC_INNER_PRODUCT) {
|
|
#pragma omp parallel for
|
|
for (size_t i = 0; i < n; i++) {
|
|
idx_t *idxi = labels + i * k;
|
|
float *simi = distances + i * k;
|
|
minheap_heapify (k, simi, idxi);
|
|
|
|
SimilarityIP sim(x + i * d, 0);
|
|
const uint8_t *ci = codes.data ();
|
|
|
|
for (size_t j = 0; j < ntotal; j++) {
|
|
float accu = squant->compute_distance_IP(sim, ci);
|
|
|
|
if (accu > simi [0]) {
|
|
minheap_pop (k, simi, idxi);
|
|
minheap_push (k, simi, idxi, accu, j);
|
|
}
|
|
ci += code_size;
|
|
}
|
|
}
|
|
} else {
|
|
#pragma omp parallel for
|
|
for (size_t i = 0; i < n; i++) {
|
|
idx_t *idxi = labels + i * k;
|
|
float *simi = distances + i * k;
|
|
maxheap_heapify (k, simi, idxi);
|
|
|
|
SimilarityL2 sim(x + i * d);
|
|
const uint8_t *ci = codes.data ();
|
|
|
|
for (size_t j = 0; j < ntotal; j++) {
|
|
float accu = squant->compute_distance_L2(sim, ci);
|
|
|
|
if (accu < simi [0]) {
|
|
maxheap_pop (k, simi, idxi);
|
|
maxheap_push (k, simi, idxi, accu, j);
|
|
}
|
|
ci += code_size;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void IndexScalarQuantizer::reset()
|
|
{
|
|
codes.clear();
|
|
ntotal = 0;
|
|
}
|
|
|
|
void IndexScalarQuantizer::reconstruct_n(
|
|
idx_t i0, idx_t ni, float* recons) const
|
|
{
|
|
Quantizer *squant = select_quantizer (sq);
|
|
ScopeDeleter1<Quantizer> del (squant);
|
|
for (size_t i = 0; i < ni; i++) {
|
|
squant->decode_vector(&codes[(i + i0) * code_size], recons + i * d);
|
|
}
|
|
}
|
|
|
|
void IndexScalarQuantizer::reconstruct(idx_t key, float* recons) const
|
|
{
|
|
reconstruct_n(key, 1, recons);
|
|
}
|
|
|
|
|
|
/*******************************************************************
|
|
* IndexIVFScalarQuantizer implementation
|
|
********************************************************************/
|
|
|
|
IndexIVFScalarQuantizer::IndexIVFScalarQuantizer
|
|
(Index *quantizer, size_t d, size_t nlist,
|
|
QuantizerType qtype, MetricType metric):
|
|
IndexIVF (quantizer, d, nlist, metric),
|
|
sq (d, qtype)
|
|
{
|
|
code_size = sq.code_size;
|
|
is_trained = false;
|
|
codes.resize(nlist);
|
|
}
|
|
|
|
IndexIVFScalarQuantizer::IndexIVFScalarQuantizer ():
|
|
IndexIVF (), code_size (0)
|
|
{}
|
|
|
|
void IndexIVFScalarQuantizer::train_residual (idx_t n, const float *x)
|
|
{
|
|
long * idx = new long [n];
|
|
ScopeDeleter<long> del (idx);
|
|
quantizer->assign (n, x, idx);
|
|
float *residuals = new float [n * d];
|
|
ScopeDeleter<float> del2 (residuals);
|
|
|
|
#pragma omp parallel for
|
|
for (idx_t i = 0; i < n; i++) {
|
|
quantizer->compute_residual (x + i * d, residuals + i * d, idx[i]);
|
|
}
|
|
|
|
sq.train (n, residuals);
|
|
|
|
}
|
|
|
|
|
|
void IndexIVFScalarQuantizer::add_with_ids
|
|
(idx_t n, const float * x, const long *xids)
|
|
{
|
|
FAISS_THROW_IF_NOT (is_trained);
|
|
long * idx = new long [n];
|
|
ScopeDeleter<long> del (idx);
|
|
quantizer->assign (n, x, idx);
|
|
size_t nadd = 0;
|
|
Quantizer *squant = select_quantizer (sq);
|
|
ScopeDeleter1<Quantizer> del2 (squant);
|
|
|
|
#pragma omp parallel reduction(+: nadd)
|
|
{
|
|
std::vector<float> residual (d);
|
|
int nt = omp_get_num_threads();
|
|
int rank = omp_get_thread_num();
|
|
|
|
for (size_t i = 0; i < n; i++) {
|
|
|
|
long list_no = idx [i];
|
|
if (list_no >= 0 && list_no % nt == rank) {
|
|
long id = xids ? xids[i] : ntotal + i;
|
|
|
|
assert (list_no < nlist);
|
|
|
|
ids[list_no].push_back (id);
|
|
nadd++;
|
|
quantizer->compute_residual (
|
|
x + i * d, residual.data(), list_no);
|
|
|
|
size_t cur_size = codes[list_no].size();
|
|
codes[list_no].resize (cur_size + code_size);
|
|
|
|
squant->encode_vector (residual.data(),
|
|
codes[list_no].data() + cur_size);
|
|
}
|
|
}
|
|
}
|
|
ntotal += nadd;
|
|
}
|
|
|
|
|
|
void search_with_probes_ip (const IndexIVFScalarQuantizer & index,
|
|
const float *x,
|
|
const idx_t *cent_ids, const float *cent_dis,
|
|
const Quantizer & quant,
|
|
int k, float *simi, idx_t *idxi)
|
|
{
|
|
int nprobe = index.nprobe;
|
|
size_t code_size = index.code_size;
|
|
size_t d = index.d;
|
|
std::vector<float> decoded(d);
|
|
minheap_heapify (k, simi, idxi);
|
|
for (int i = 0; i < nprobe; i++) {
|
|
idx_t list_no = cent_ids[i];
|
|
if (list_no < 0) break;
|
|
float accu0 = cent_dis[i];
|
|
|
|
const std::vector<idx_t> & ids = index.ids[list_no];
|
|
const uint8_t* codes = index.codes[list_no].data();
|
|
|
|
SimilarityIP sim(x, accu0);
|
|
|
|
for (size_t j = 0; j < ids.size(); j++) {
|
|
|
|
float accu = quant.compute_distance_IP(sim, codes);
|
|
|
|
if (accu > simi [0]) {
|
|
minheap_pop (k, simi, idxi);
|
|
minheap_push (k, simi, idxi, accu, ids[j]);
|
|
}
|
|
codes += code_size;
|
|
}
|
|
|
|
}
|
|
minheap_reorder (k, simi, idxi);
|
|
}
|
|
|
|
void search_with_probes_L2 (const IndexIVFScalarQuantizer & index,
|
|
const float *x_in,
|
|
const idx_t *cent_ids,
|
|
const Index *quantizer,
|
|
const Quantizer & quant,
|
|
int k, float *simi, idx_t *idxi)
|
|
{
|
|
int nprobe = index.nprobe;
|
|
size_t code_size = index.code_size;
|
|
size_t d = index.d;
|
|
std::vector<float> decoded(d), x(d);
|
|
maxheap_heapify (k, simi, idxi);
|
|
for (int i = 0; i < nprobe; i++) {
|
|
idx_t list_no = cent_ids[i];
|
|
if (list_no < 0) break;
|
|
|
|
const std::vector<idx_t> & ids = index.ids[list_no];
|
|
const uint8_t* codes = index.codes[list_no].data();
|
|
|
|
// shift of x_in wrt centroid
|
|
quantizer->compute_residual (x_in, x.data(), list_no);
|
|
|
|
SimilarityL2 sim(x.data());
|
|
|
|
for (size_t j = 0; j < ids.size(); j++) {
|
|
|
|
float dis = quant.compute_distance_L2 (sim, codes);
|
|
|
|
if (dis < simi [0]) {
|
|
maxheap_pop (k, simi, idxi);
|
|
maxheap_push (k, simi, idxi, dis, ids[j]);
|
|
}
|
|
codes += code_size;
|
|
}
|
|
}
|
|
maxheap_reorder (k, simi, idxi);
|
|
}
|
|
|
|
|
|
void IndexIVFScalarQuantizer::search (idx_t n, const float *x, idx_t k,
|
|
float *distances, idx_t *labels) const
|
|
{
|
|
FAISS_THROW_IF_NOT (is_trained);
|
|
idx_t *idx = new idx_t [n * nprobe];
|
|
ScopeDeleter<idx_t> del (idx);
|
|
float *dis = new float [n * nprobe];
|
|
ScopeDeleter<float> del2 (dis);
|
|
|
|
quantizer->search (n, x, nprobe, dis, idx);
|
|
|
|
Quantizer *squant = select_quantizer (sq);
|
|
ScopeDeleter1<Quantizer> del3(squant);
|
|
|
|
if (metric_type == METRIC_INNER_PRODUCT) {
|
|
#pragma omp parallel for
|
|
for (size_t i = 0; i < n; i++) {
|
|
search_with_probes_ip (*this, x + i * d,
|
|
idx + i * nprobe, dis + i * nprobe, *squant,
|
|
k, distances + i * k, labels + i * k);
|
|
}
|
|
} else {
|
|
#pragma omp parallel for
|
|
for (size_t i = 0; i < n; i++) {
|
|
search_with_probes_L2 (*this, x + i * d,
|
|
idx + i * nprobe, quantizer, *squant,
|
|
k, distances + i * k, labels + i * k);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
void IndexIVFScalarQuantizer::merge_from_residuals (IndexIVF & other_in) {
|
|
IndexIVFScalarQuantizer &other =
|
|
dynamic_cast<IndexIVFScalarQuantizer &> (other_in);
|
|
for (int i = 0; i < nlist; i++) {
|
|
std::vector<uint8_t> & src = other.codes[i];
|
|
std::vector<uint8_t> & dest = codes[i];
|
|
dest.insert (dest.end(), src.begin (), src.end ());
|
|
src.clear ();
|
|
}
|
|
|
|
}
|
|
|
|
|
|
}
|