faiss/benchs/bench_polysemous_1bn.py
Matthijs Douze 6d0bc58db6 Implementation of PQ4 search with SIMD instructions (#1542)
Summary:
IndexPQ and IndexIVFPQ implementations with AVX shuffle instructions.

The training and computing of the codes does not change wrt. the original PQ versions but the code layout is "packed" so that it can be used efficiently by the SIMD computation kernels.

The main changes are:

- new IndexPQFastScan and IndexIVFPQFastScan objects

- simdib.h for an abstraction above the AVX2 intrinsics

- BlockInvertedLists for invlists that are 32-byte aligned and where codes are not sequential

- pq4_fast_scan.h/.cpp:  for packing codes and look-up tables + optmized distance comptuation kernels

- simd_result_hander.h: SIMD version of result collection in heaps / reservoirs

Misc changes:

- added contrib.inspect_tools to access fields in C++ objects

- moved .h and .cpp code for inverted lists to an invlists/ subdirectory, and made a .h/.cpp for InvertedListsIOHook

- added a new inverted lists type with 32-byte aligned codes (for consumption by SIMD)

- moved Windows-specific intrinsics to platfrom_macros.h

Pull Request resolved: https://github.com/facebookresearch/faiss/pull/1542

Test Plan:
```
buck test mode/opt  -j 4  //faiss/tests/:test_fast_scan_ivf //faiss/tests/:test_fast_scan
buck test mode/opt  //faiss/manifold/...
```

Reviewed By: wickedfoo

Differential Revision: D25175439

Pulled By: mdouze

fbshipit-source-id: ad1a40c0df8c10f4b364bdec7172e43d71b56c34
2020-12-03 10:06:38 -08:00

252 lines
6.9 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import sys
import time
import numpy as np
import re
import faiss
from multiprocessing.dummy import Pool as ThreadPool
from datasets import ivecs_read
# we mem-map the biggest files to avoid having them in memory all at
# once
def mmap_fvecs(fname):
x = np.memmap(fname, dtype='int32', mode='r')
d = x[0]
return x.view('float32').reshape(-1, d + 1)[:, 1:]
def mmap_bvecs(fname):
x = np.memmap(fname, dtype='uint8', mode='r')
d = x[:4].view('int32')[0]
return x.reshape(-1, d + 4)[:, 4:]
#################################################################
# Bookkeeping
#################################################################
dbname = sys.argv[1]
index_key = sys.argv[2]
parametersets = sys.argv[3:]
tmpdir = '/tmp/bench_polysemous'
if not os.path.isdir(tmpdir):
print("%s does not exist, creating it" % tmpdir)
os.mkdir(tmpdir)
#################################################################
# Prepare dataset
#################################################################
print("Preparing dataset", dbname)
if dbname.startswith('SIFT'):
# SIFT1M to SIFT1000M
dbsize = int(dbname[4:-1])
xb = mmap_bvecs('bigann/bigann_base.bvecs')
xq = mmap_bvecs('bigann/bigann_query.bvecs')
xt = mmap_bvecs('bigann/bigann_learn.bvecs')
# trim xb to correct size
xb = xb[:dbsize * 1000 * 1000]
gt = ivecs_read('bigann/gnd/idx_%dM.ivecs' % dbsize)
elif dbname == 'Deep1B':
xb = mmap_fvecs('deep1b/base.fvecs')
xq = mmap_fvecs('deep1b/deep1B_queries.fvecs')
xt = mmap_fvecs('deep1b/learn.fvecs')
# deep1B's train is is outrageously big
xt = xt[:10 * 1000 * 1000]
gt = ivecs_read('deep1b/deep1B_groundtruth.ivecs')
else:
print('unknown dataset', dbname, file=sys.stderr)
sys.exit(1)
print("sizes: B %s Q %s T %s gt %s" % (
xb.shape, xq.shape, xt.shape, gt.shape))
nq, d = xq.shape
nb, d = xb.shape
assert gt.shape[0] == nq
#################################################################
# Training
#################################################################
def choose_train_size(index_key):
# some training vectors for PQ and the PCA
n_train = 256 * 1000
if "IVF" in index_key:
matches = re.findall('IVF([0-9]+)', index_key)
ncentroids = int(matches[0])
n_train = max(n_train, 100 * ncentroids)
elif "IMI" in index_key:
matches = re.findall('IMI2x([0-9]+)', index_key)
nbit = int(matches[0])
n_train = max(n_train, 256 * (1 << nbit))
return n_train
def get_trained_index():
filename = "%s/%s_%s_trained.index" % (
tmpdir, dbname, index_key)
if not os.path.exists(filename):
index = faiss.index_factory(d, index_key)
n_train = choose_train_size(index_key)
xtsub = xt[:n_train]
print("Keeping %d train vectors" % xtsub.shape[0])
# make sure the data is actually in RAM and in float
xtsub = xtsub.astype('float32').copy()
index.verbose = True
t0 = time.time()
index.train(xtsub)
index.verbose = False
print("train done in %.3f s" % (time.time() - t0))
print("storing", filename)
faiss.write_index(index, filename)
else:
print("loading", filename)
index = faiss.read_index(filename)
return index
#################################################################
# Adding vectors to dataset
#################################################################
def rate_limited_imap(f, l):
'a thread pre-processes the next element'
pool = ThreadPool(1)
res = None
for i in l:
res_next = pool.apply_async(f, (i, ))
if res:
yield res.get()
res = res_next
yield res.get()
def matrix_slice_iterator(x, bs):
" iterate over the lines of x in blocks of size bs"
nb = x.shape[0]
block_ranges = [(i0, min(nb, i0 + bs))
for i0 in range(0, nb, bs)]
return rate_limited_imap(
lambda i01: x[i01[0]:i01[1]].astype('float32').copy(),
block_ranges)
def get_populated_index():
filename = "%s/%s_%s_populated.index" % (
tmpdir, dbname, index_key)
if not os.path.exists(filename):
index = get_trained_index()
i0 = 0
t0 = time.time()
for xs in matrix_slice_iterator(xb, 100000):
i1 = i0 + xs.shape[0]
print('\radd %d:%d, %.3f s' % (i0, i1, time.time() - t0), end=' ')
sys.stdout.flush()
index.add(xs)
i0 = i1
print()
print("Add done in %.3f s" % (time.time() - t0))
print("storing", filename)
faiss.write_index(index, filename)
else:
print("loading", filename)
index = faiss.read_index(filename)
return index
#################################################################
# Perform searches
#################################################################
index = get_populated_index()
ps = faiss.ParameterSpace()
ps.initialize(index)
# make sure queries are in RAM
xq = xq.astype('float32').copy()
# a static C++ object that collects statistics about searches
ivfpq_stats = faiss.cvar.indexIVFPQ_stats
ivf_stats = faiss.cvar.indexIVF_stats
if parametersets == ['autotune'] or parametersets == ['autotuneMT']:
if parametersets == ['autotune']:
faiss.omp_set_num_threads(1)
# setup the Criterion object: optimize for 1-R@1
crit = faiss.OneRecallAtRCriterion(nq, 1)
# by default, the criterion will request only 1 NN
crit.nnn = 100
crit.set_groundtruth(None, gt.astype('int64'))
# then we let Faiss find the optimal parameters by itself
print("exploring operating points")
t0 = time.time()
op = ps.explore(index, xq, crit)
print("Done in %.3f s, available OPs:" % (time.time() - t0))
# opv is a C++ vector, so it cannot be accessed like a Python array
opv = op.optimal_pts
print("%-40s 1-R@1 time" % "Parameters")
for i in range(opv.size()):
opt = opv.at(i)
print("%-40s %.4f %7.3f" % (opt.key, opt.perf, opt.t))
else:
# we do queries in a single thread
faiss.omp_set_num_threads(1)
print(' ' * len(parametersets[0]), '\t', 'R@1 R@10 R@100 time %pass')
for param in parametersets:
print(param, '\t', end=' ')
sys.stdout.flush()
ps.set_index_parameters(index, param)
t0 = time.time()
ivfpq_stats.reset()
ivf_stats.reset()
D, I = index.search(xq, 100)
t1 = time.time()
for rank in 1, 10, 100:
n_ok = (I[:, :rank] == gt[:, :1]).sum()
print("%.4f" % (n_ok / float(nq)), end=' ')
print("%8.3f " % ((t1 - t0) * 1000.0 / nq), end=' ')
print("%5.2f" % (ivfpq_stats.n_hamming_pass * 100.0 / ivf_stats.ndis))