mirror of
https://github.com/facebookresearch/faiss.git
synced 2025-06-03 21:54:02 +08:00
various bugfixes from github issues kmean with some frozen centroids GPU better tiling for large flat datasets default AVX for vector ops
812 lines
125 KiB
HTML
812 lines
125 KiB
HTML
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
|
<html xmlns="http://www.w3.org/1999/xhtml">
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
|
|
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
|
|
<meta name="generator" content="Doxygen 1.8.5"/>
|
|
<title>Faiss: /data/users/matthijs/github_faiss/faiss/gpu/utils/Tensor-inl.cuh Source File</title>
|
|
<link href="tabs.css" rel="stylesheet" type="text/css"/>
|
|
<script type="text/javascript" src="jquery.js"></script>
|
|
<script type="text/javascript" src="dynsections.js"></script>
|
|
<link href="search/search.css" rel="stylesheet" type="text/css"/>
|
|
<script type="text/javascript" src="search/search.js"></script>
|
|
<script type="text/javascript">
|
|
$(document).ready(function() { searchBox.OnSelectItem(0); });
|
|
</script>
|
|
<link href="doxygen.css" rel="stylesheet" type="text/css" />
|
|
</head>
|
|
<body>
|
|
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
|
|
<div id="titlearea">
|
|
<table cellspacing="0" cellpadding="0">
|
|
<tbody>
|
|
<tr style="height: 56px;">
|
|
<td style="padding-left: 0.5em;">
|
|
<div id="projectname">Faiss
|
|
</div>
|
|
</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
</div>
|
|
<!-- end header part -->
|
|
<!-- Generated by Doxygen 1.8.5 -->
|
|
<script type="text/javascript">
|
|
var searchBox = new SearchBox("searchBox", "search",false,'Search');
|
|
</script>
|
|
<div id="navrow1" class="tabs">
|
|
<ul class="tablist">
|
|
<li><a href="index.html"><span>Main Page</span></a></li>
|
|
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
|
|
<li><a href="annotated.html"><span>Classes</span></a></li>
|
|
<li class="current"><a href="files.html"><span>Files</span></a></li>
|
|
<li>
|
|
<div id="MSearchBox" class="MSearchBoxInactive">
|
|
<span class="left">
|
|
<img id="MSearchSelect" src="search/mag_sel.png"
|
|
onmouseover="return searchBox.OnSearchSelectShow()"
|
|
onmouseout="return searchBox.OnSearchSelectHide()"
|
|
alt=""/>
|
|
<input type="text" id="MSearchField" value="Search" accesskey="S"
|
|
onfocus="searchBox.OnSearchFieldFocus(true)"
|
|
onblur="searchBox.OnSearchFieldFocus(false)"
|
|
onkeyup="searchBox.OnSearchFieldChange(event)"/>
|
|
</span><span class="right">
|
|
<a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
|
|
</span>
|
|
</div>
|
|
</li>
|
|
</ul>
|
|
</div>
|
|
<div id="navrow2" class="tabs2">
|
|
<ul class="tablist">
|
|
<li><a href="files.html"><span>File List</span></a></li>
|
|
</ul>
|
|
</div>
|
|
<!-- window showing the filter options -->
|
|
<div id="MSearchSelectWindow"
|
|
onmouseover="return searchBox.OnSearchSelectShow()"
|
|
onmouseout="return searchBox.OnSearchSelectHide()"
|
|
onkeydown="return searchBox.OnSearchSelectKey(event)">
|
|
<a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark"> </span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark"> </span>Classes</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark"> </span>Namespaces</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(3)"><span class="SelectionMark"> </span>Functions</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(4)"><span class="SelectionMark"> </span>Variables</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(5)"><span class="SelectionMark"> </span>Typedefs</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(6)"><span class="SelectionMark"> </span>Enumerations</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(7)"><span class="SelectionMark"> </span>Enumerator</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(8)"><span class="SelectionMark"> </span>Friends</a></div>
|
|
|
|
<!-- iframe showing the search results (closed by default) -->
|
|
<div id="MSearchResultsWindow">
|
|
<iframe src="javascript:void(0)" frameborder="0"
|
|
name="MSearchResults" id="MSearchResults">
|
|
</iframe>
|
|
</div>
|
|
|
|
<div id="nav-path" class="navpath">
|
|
<ul>
|
|
<li class="navelem"><a class="el" href="dir_6b3ae6988449b0834e9596fad5d75199.html">gpu</a></li><li class="navelem"><a class="el" href="dir_498271007b03b2a0521055e88776887b.html">utils</a></li> </ul>
|
|
</div>
|
|
</div><!-- top -->
|
|
<div class="header">
|
|
<div class="headertitle">
|
|
<div class="title">Tensor-inl.cuh</div> </div>
|
|
</div><!--header-->
|
|
<div class="contents">
|
|
<div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno"> 1</span> <span class="comment">/**</span></div>
|
|
<div class="line"><a name="l00002"></a><span class="lineno"> 2</span> <span class="comment"> * Copyright (c) 2015-present, Facebook, Inc.</span></div>
|
|
<div class="line"><a name="l00003"></a><span class="lineno"> 3</span> <span class="comment"> * All rights reserved.</span></div>
|
|
<div class="line"><a name="l00004"></a><span class="lineno"> 4</span> <span class="comment"> *</span></div>
|
|
<div class="line"><a name="l00005"></a><span class="lineno"> 5</span> <span class="comment"> * This source code is licensed under the BSD+Patents license found in the</span></div>
|
|
<div class="line"><a name="l00006"></a><span class="lineno"> 6</span> <span class="comment"> * LICENSE file in the root directory of this source tree.</span></div>
|
|
<div class="line"><a name="l00007"></a><span class="lineno"> 7</span> <span class="comment"> */</span></div>
|
|
<div class="line"><a name="l00008"></a><span class="lineno"> 8</span> </div>
|
|
<div class="line"><a name="l00009"></a><span class="lineno"> 9</span> <span class="comment">// Copyright 2004-present Facebook. All Rights Reserved.</span></div>
|
|
<div class="line"><a name="l00010"></a><span class="lineno"> 10</span> </div>
|
|
<div class="line"><a name="l00011"></a><span class="lineno"> 11</span> <span class="preprocessor">#include "../GpuFaissAssert.h"</span></div>
|
|
<div class="line"><a name="l00012"></a><span class="lineno"> 12</span> <span class="preprocessor">#include "DeviceUtils.h"</span></div>
|
|
<div class="line"><a name="l00013"></a><span class="lineno"> 13</span> <span class="preprocessor">#include <limits></span></div>
|
|
<div class="line"><a name="l00014"></a><span class="lineno"> 14</span> </div>
|
|
<div class="line"><a name="l00015"></a><span class="lineno"> 15</span> <span class="keyword">namespace </span>faiss { <span class="keyword">namespace </span>gpu {</div>
|
|
<div class="line"><a name="l00016"></a><span class="lineno"> 16</span> </div>
|
|
<div class="line"><a name="l00017"></a><span class="lineno"> 17</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00018"></a><span class="lineno"> 18</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00019"></a><span class="lineno"> 19</span> __host__ __device__</div>
|
|
<div class="line"><a name="l00020"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd"> 20</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::Tensor</a>()</div>
|
|
<div class="line"><a name="l00021"></a><span class="lineno"> 21</span>  : data_(nullptr) {</div>
|
|
<div class="line"><a name="l00022"></a><span class="lineno"> 22</span>  static_assert(Dim > 0, <span class="stringliteral">"must have > 0 dimensions"</span>);</div>
|
|
<div class="line"><a name="l00023"></a><span class="lineno"> 23</span> </div>
|
|
<div class="line"><a name="l00024"></a><span class="lineno"> 24</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
|
|
<div class="line"><a name="l00025"></a><span class="lineno"> 25</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#ad96fbf0f5e7c06a1031b8b18f7fc01d7">size_</a>[i] = 0;</div>
|
|
<div class="line"><a name="l00026"></a><span class="lineno"> 26</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[i] = (IndexT) 1;</div>
|
|
<div class="line"><a name="l00027"></a><span class="lineno"> 27</span>  }</div>
|
|
<div class="line"><a name="l00028"></a><span class="lineno"> 28</span> }</div>
|
|
<div class="line"><a name="l00029"></a><span class="lineno"> 29</span> </div>
|
|
<div class="line"><a name="l00030"></a><span class="lineno"> 30</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00031"></a><span class="lineno"> 31</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00032"></a><span class="lineno"> 32</span> __host__ __device__</div>
|
|
<div class="line"><a name="l00033"></a><span class="lineno"> 33</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits></a>&</div>
|
|
<div class="line"><a name="l00034"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#ae086a03b8067e18d0c2dda0892dc9e39"> 34</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a503fe45536fb7153fbd18fe61c159304">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::operator=</a>(</div>
|
|
<div class="line"><a name="l00035"></a><span class="lineno"> 35</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits></a>&& t) {</div>
|
|
<div class="line"><a name="l00036"></a><span class="lineno"> 36</span>  data_ = t.data_; t.data_ = <span class="keyword">nullptr</span>;</div>
|
|
<div class="line"><a name="l00037"></a><span class="lineno"> 37</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
|
|
<div class="line"><a name="l00038"></a><span class="lineno"> 38</span>  stride_[i] = t.stride_[i]; t.stride_[i] = 0;</div>
|
|
<div class="line"><a name="l00039"></a><span class="lineno"> 39</span>  size_[i] = t.size_[i]; t.size_[i] = 0;</div>
|
|
<div class="line"><a name="l00040"></a><span class="lineno"> 40</span>  }</div>
|
|
<div class="line"><a name="l00041"></a><span class="lineno"> 41</span> </div>
|
|
<div class="line"><a name="l00042"></a><span class="lineno"> 42</span>  <span class="keywordflow">return</span> *<span class="keyword">this</span>;</div>
|
|
<div class="line"><a name="l00043"></a><span class="lineno"> 43</span> }</div>
|
|
<div class="line"><a name="l00044"></a><span class="lineno"> 44</span> </div>
|
|
<div class="line"><a name="l00045"></a><span class="lineno"> 45</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00046"></a><span class="lineno"> 46</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00047"></a><span class="lineno"> 47</span> __host__ __device__</div>
|
|
<div class="line"><a name="l00048"></a><span class="lineno"> 48</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::</a></div>
|
|
<div class="line"><a name="l00049"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a88210dee96fc97b00f0ab45749528fe9"> 49</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">Tensor</a>(DataPtrType data, <span class="keyword">const</span> IndexT sizes[Dim])</div>
|
|
<div class="line"><a name="l00050"></a><span class="lineno"> 50</span>  : data_(data) {</div>
|
|
<div class="line"><a name="l00051"></a><span class="lineno"> 51</span>  static_assert(Dim > 0, <span class="stringliteral">"must have > 0 dimensions"</span>);</div>
|
|
<div class="line"><a name="l00052"></a><span class="lineno"> 52</span> </div>
|
|
<div class="line"><a name="l00053"></a><span class="lineno"> 53</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
|
|
<div class="line"><a name="l00054"></a><span class="lineno"> 54</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#ad96fbf0f5e7c06a1031b8b18f7fc01d7">size_</a>[i] = <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#abc0ecc4f882ee09632b5a06be0619adb">sizes</a>[i];</div>
|
|
<div class="line"><a name="l00055"></a><span class="lineno"> 55</span>  }</div>
|
|
<div class="line"><a name="l00056"></a><span class="lineno"> 56</span> </div>
|
|
<div class="line"><a name="l00057"></a><span class="lineno"> 57</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[Dim - 1] = (IndexT) 1;</div>
|
|
<div class="line"><a name="l00058"></a><span class="lineno"> 58</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = Dim - 2; i >= 0; --i) {</div>
|
|
<div class="line"><a name="l00059"></a><span class="lineno"> 59</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[i] = <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[i + 1] * <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#abc0ecc4f882ee09632b5a06be0619adb">sizes</a>[i + 1];</div>
|
|
<div class="line"><a name="l00060"></a><span class="lineno"> 60</span>  }</div>
|
|
<div class="line"><a name="l00061"></a><span class="lineno"> 61</span> }</div>
|
|
<div class="line"><a name="l00062"></a><span class="lineno"> 62</span> </div>
|
|
<div class="line"><a name="l00063"></a><span class="lineno"> 63</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00064"></a><span class="lineno"> 64</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00065"></a><span class="lineno"> 65</span> __host__ __device__</div>
|
|
<div class="line"><a name="l00066"></a><span class="lineno"> 66</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::</a></div>
|
|
<div class="line"><a name="l00067"></a><span class="lineno"> 67</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">Tensor</a>(DataPtrType data, std::initializer_list<IndexT> sizes)</div>
|
|
<div class="line"><a name="l00068"></a><span class="lineno"> 68</span>  : data_(data) {</div>
|
|
<div class="line"><a name="l00069"></a><span class="lineno"> 69</span>  GPU_FAISS_ASSERT(sizes.size() == Dim);</div>
|
|
<div class="line"><a name="l00070"></a><span class="lineno"> 70</span>  static_assert(Dim > 0, <span class="stringliteral">"must have > 0 dimensions"</span>);</div>
|
|
<div class="line"><a name="l00071"></a><span class="lineno"> 71</span> </div>
|
|
<div class="line"><a name="l00072"></a><span class="lineno"> 72</span>  <span class="keywordtype">int</span> i = 0;</div>
|
|
<div class="line"><a name="l00073"></a><span class="lineno"> 73</span>  <span class="keywordflow">for</span> (<span class="keyword">auto</span> s : sizes) {</div>
|
|
<div class="line"><a name="l00074"></a><span class="lineno"> 74</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#ad96fbf0f5e7c06a1031b8b18f7fc01d7">size_</a>[i++] = s;</div>
|
|
<div class="line"><a name="l00075"></a><span class="lineno"> 75</span>  }</div>
|
|
<div class="line"><a name="l00076"></a><span class="lineno"> 76</span> </div>
|
|
<div class="line"><a name="l00077"></a><span class="lineno"> 77</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[Dim - 1] = (IndexT) 1;</div>
|
|
<div class="line"><a name="l00078"></a><span class="lineno"> 78</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> j = Dim - 2; j >= 0; --j) {</div>
|
|
<div class="line"><a name="l00079"></a><span class="lineno"> 79</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[j] = <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[j + 1] * <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#ad96fbf0f5e7c06a1031b8b18f7fc01d7">size_</a>[j + 1];</div>
|
|
<div class="line"><a name="l00080"></a><span class="lineno"> 80</span>  }</div>
|
|
<div class="line"><a name="l00081"></a><span class="lineno"> 81</span> }</div>
|
|
<div class="line"><a name="l00082"></a><span class="lineno"> 82</span> </div>
|
|
<div class="line"><a name="l00083"></a><span class="lineno"> 83</span> </div>
|
|
<div class="line"><a name="l00084"></a><span class="lineno"> 84</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00085"></a><span class="lineno"> 85</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00086"></a><span class="lineno"> 86</span> __host__ __device__</div>
|
|
<div class="line"><a name="l00087"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#ac651b20d86813b8928f05cde4fb1ff7d"> 87</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::Tensor</a>(</div>
|
|
<div class="line"><a name="l00088"></a><span class="lineno"> 88</span>  DataPtrType data, <span class="keyword">const</span> IndexT sizes[Dim], <span class="keyword">const</span> IndexT strides[Dim])</div>
|
|
<div class="line"><a name="l00089"></a><span class="lineno"> 89</span>  : data_(data) {</div>
|
|
<div class="line"><a name="l00090"></a><span class="lineno"> 90</span>  static_assert(Dim > 0, <span class="stringliteral">"must have > 0 dimensions"</span>);</div>
|
|
<div class="line"><a name="l00091"></a><span class="lineno"> 91</span> </div>
|
|
<div class="line"><a name="l00092"></a><span class="lineno"> 92</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
|
|
<div class="line"><a name="l00093"></a><span class="lineno"> 93</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#ad96fbf0f5e7c06a1031b8b18f7fc01d7">size_</a>[i] = sizes[i];</div>
|
|
<div class="line"><a name="l00094"></a><span class="lineno"> 94</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[i] = <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a87a777247486756e99060547a3cc833a">strides</a>[i];</div>
|
|
<div class="line"><a name="l00095"></a><span class="lineno"> 95</span>  }</div>
|
|
<div class="line"><a name="l00096"></a><span class="lineno"> 96</span> }</div>
|
|
<div class="line"><a name="l00097"></a><span class="lineno"> 97</span> </div>
|
|
<div class="line"><a name="l00098"></a><span class="lineno"> 98</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00099"></a><span class="lineno"> 99</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00100"></a><span class="lineno"> 100</span> __host__ <span class="keywordtype">void</span></div>
|
|
<div class="line"><a name="l00101"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a6dc00c182a92389b74c89ba7fcab40d3"> 101</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6dc00c182a92389b74c89ba7fcab40d3">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::copyFrom</a>(</div>
|
|
<div class="line"><a name="l00102"></a><span class="lineno"> 102</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits></a>& t,</div>
|
|
<div class="line"><a name="l00103"></a><span class="lineno"> 103</span>  cudaStream_t stream) {</div>
|
|
<div class="line"><a name="l00104"></a><span class="lineno"> 104</span>  <span class="comment">// The tensor must be fully contiguous</span></div>
|
|
<div class="line"><a name="l00105"></a><span class="lineno"> 105</span>  GPU_FAISS_ASSERT(this->isContiguous());</div>
|
|
<div class="line"><a name="l00106"></a><span class="lineno"> 106</span> </div>
|
|
<div class="line"><a name="l00107"></a><span class="lineno"> 107</span>  <span class="comment">// Size must be the same (since dimensions are checked and</span></div>
|
|
<div class="line"><a name="l00108"></a><span class="lineno"> 108</span>  <span class="comment">// continuity is assumed, we need only check total number of</span></div>
|
|
<div class="line"><a name="l00109"></a><span class="lineno"> 109</span>  <span class="comment">// elements</span></div>
|
|
<div class="line"><a name="l00110"></a><span class="lineno"> 110</span>  GPU_FAISS_ASSERT(this->numElements() == t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a0ba9ab7c1676b7a41a6e6b2e5a490d2f">numElements</a>());</div>
|
|
<div class="line"><a name="l00111"></a><span class="lineno"> 111</span> </div>
|
|
<div class="line"><a name="l00112"></a><span class="lineno"> 112</span>  <span class="keywordflow">if</span> (t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a0ba9ab7c1676b7a41a6e6b2e5a490d2f">numElements</a>() > 0) {</div>
|
|
<div class="line"><a name="l00113"></a><span class="lineno"> 113</span>  GPU_FAISS_ASSERT(this->data_);</div>
|
|
<div class="line"><a name="l00114"></a><span class="lineno"> 114</span>  GPU_FAISS_ASSERT(t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>());</div>
|
|
<div class="line"><a name="l00115"></a><span class="lineno"> 115</span> </div>
|
|
<div class="line"><a name="l00116"></a><span class="lineno"> 116</span>  <span class="keywordtype">int</span> ourDev = getDeviceForAddress(this->data_);</div>
|
|
<div class="line"><a name="l00117"></a><span class="lineno"> 117</span>  <span class="keywordtype">int</span> tDev = getDeviceForAddress(t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>());</div>
|
|
<div class="line"><a name="l00118"></a><span class="lineno"> 118</span> </div>
|
|
<div class="line"><a name="l00119"></a><span class="lineno"> 119</span>  <span class="keywordflow">if</span> (tDev == -1) {</div>
|
|
<div class="line"><a name="l00120"></a><span class="lineno"> 120</span>  CUDA_VERIFY(cudaMemcpyAsync(this->data_,</div>
|
|
<div class="line"><a name="l00121"></a><span class="lineno"> 121</span>  t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>(),</div>
|
|
<div class="line"><a name="l00122"></a><span class="lineno"> 122</span>  this->getSizeInBytes(),</div>
|
|
<div class="line"><a name="l00123"></a><span class="lineno"> 123</span>  ourDev == -1 ? cudaMemcpyHostToHost :</div>
|
|
<div class="line"><a name="l00124"></a><span class="lineno"> 124</span>  cudaMemcpyHostToDevice,</div>
|
|
<div class="line"><a name="l00125"></a><span class="lineno"> 125</span>  stream));</div>
|
|
<div class="line"><a name="l00126"></a><span class="lineno"> 126</span>  } <span class="keywordflow">else</span> {</div>
|
|
<div class="line"><a name="l00127"></a><span class="lineno"> 127</span>  CUDA_VERIFY(cudaMemcpyAsync(this->data_,</div>
|
|
<div class="line"><a name="l00128"></a><span class="lineno"> 128</span>  t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>(),</div>
|
|
<div class="line"><a name="l00129"></a><span class="lineno"> 129</span>  this->getSizeInBytes(),</div>
|
|
<div class="line"><a name="l00130"></a><span class="lineno"> 130</span>  ourDev == -1 ? cudaMemcpyDeviceToHost :</div>
|
|
<div class="line"><a name="l00131"></a><span class="lineno"> 131</span>  cudaMemcpyDeviceToDevice,</div>
|
|
<div class="line"><a name="l00132"></a><span class="lineno"> 132</span>  stream));</div>
|
|
<div class="line"><a name="l00133"></a><span class="lineno"> 133</span>  }</div>
|
|
<div class="line"><a name="l00134"></a><span class="lineno"> 134</span>  }</div>
|
|
<div class="line"><a name="l00135"></a><span class="lineno"> 135</span> }</div>
|
|
<div class="line"><a name="l00136"></a><span class="lineno"> 136</span> </div>
|
|
<div class="line"><a name="l00137"></a><span class="lineno"> 137</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00138"></a><span class="lineno"> 138</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00139"></a><span class="lineno"> 139</span> __host__ <span class="keywordtype">void</span></div>
|
|
<div class="line"><a name="l00140"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a6cc21376070a03d77661d6e333972c6a"> 140</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6cc21376070a03d77661d6e333972c6a">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::copyTo</a>(</div>
|
|
<div class="line"><a name="l00141"></a><span class="lineno"> 141</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits></a>& t,</div>
|
|
<div class="line"><a name="l00142"></a><span class="lineno"> 142</span>  cudaStream_t stream) {</div>
|
|
<div class="line"><a name="l00143"></a><span class="lineno"> 143</span>  <span class="comment">// The tensor must be fully contiguous</span></div>
|
|
<div class="line"><a name="l00144"></a><span class="lineno"> 144</span>  GPU_FAISS_ASSERT(this->isContiguous());</div>
|
|
<div class="line"><a name="l00145"></a><span class="lineno"> 145</span> </div>
|
|
<div class="line"><a name="l00146"></a><span class="lineno"> 146</span>  <span class="comment">// Size must be the same (since dimensions are checked and</span></div>
|
|
<div class="line"><a name="l00147"></a><span class="lineno"> 147</span>  <span class="comment">// continuity is assumed, we need only check total number of</span></div>
|
|
<div class="line"><a name="l00148"></a><span class="lineno"> 148</span>  <span class="comment">// elements</span></div>
|
|
<div class="line"><a name="l00149"></a><span class="lineno"> 149</span>  GPU_FAISS_ASSERT(this->numElements() == t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a0ba9ab7c1676b7a41a6e6b2e5a490d2f">numElements</a>());</div>
|
|
<div class="line"><a name="l00150"></a><span class="lineno"> 150</span> </div>
|
|
<div class="line"><a name="l00151"></a><span class="lineno"> 151</span>  <span class="keywordflow">if</span> (t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a0ba9ab7c1676b7a41a6e6b2e5a490d2f">numElements</a>() > 0) {</div>
|
|
<div class="line"><a name="l00152"></a><span class="lineno"> 152</span>  GPU_FAISS_ASSERT(this->data_);</div>
|
|
<div class="line"><a name="l00153"></a><span class="lineno"> 153</span>  GPU_FAISS_ASSERT(t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>());</div>
|
|
<div class="line"><a name="l00154"></a><span class="lineno"> 154</span> </div>
|
|
<div class="line"><a name="l00155"></a><span class="lineno"> 155</span>  <span class="keywordtype">int</span> ourDev = getDeviceForAddress(this->data_);</div>
|
|
<div class="line"><a name="l00156"></a><span class="lineno"> 156</span>  <span class="keywordtype">int</span> tDev = getDeviceForAddress(t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>());</div>
|
|
<div class="line"><a name="l00157"></a><span class="lineno"> 157</span> </div>
|
|
<div class="line"><a name="l00158"></a><span class="lineno"> 158</span>  <span class="keywordflow">if</span> (tDev == -1) {</div>
|
|
<div class="line"><a name="l00159"></a><span class="lineno"> 159</span>  CUDA_VERIFY(cudaMemcpyAsync(t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>(),</div>
|
|
<div class="line"><a name="l00160"></a><span class="lineno"> 160</span>  this->data_,</div>
|
|
<div class="line"><a name="l00161"></a><span class="lineno"> 161</span>  this->getSizeInBytes(),</div>
|
|
<div class="line"><a name="l00162"></a><span class="lineno"> 162</span>  ourDev == -1 ? cudaMemcpyHostToHost :</div>
|
|
<div class="line"><a name="l00163"></a><span class="lineno"> 163</span>  cudaMemcpyDeviceToHost,</div>
|
|
<div class="line"><a name="l00164"></a><span class="lineno"> 164</span>  stream));</div>
|
|
<div class="line"><a name="l00165"></a><span class="lineno"> 165</span>  } <span class="keywordflow">else</span> {</div>
|
|
<div class="line"><a name="l00166"></a><span class="lineno"> 166</span>  CUDA_VERIFY(cudaMemcpyAsync(t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>(),</div>
|
|
<div class="line"><a name="l00167"></a><span class="lineno"> 167</span>  this->data_,</div>
|
|
<div class="line"><a name="l00168"></a><span class="lineno"> 168</span>  this->getSizeInBytes(),</div>
|
|
<div class="line"><a name="l00169"></a><span class="lineno"> 169</span>  ourDev == -1 ? cudaMemcpyHostToDevice :</div>
|
|
<div class="line"><a name="l00170"></a><span class="lineno"> 170</span>  cudaMemcpyDeviceToDevice,</div>
|
|
<div class="line"><a name="l00171"></a><span class="lineno"> 171</span>  stream));</div>
|
|
<div class="line"><a name="l00172"></a><span class="lineno"> 172</span>  }</div>
|
|
<div class="line"><a name="l00173"></a><span class="lineno"> 173</span>  }</div>
|
|
<div class="line"><a name="l00174"></a><span class="lineno"> 174</span> }</div>
|
|
<div class="line"><a name="l00175"></a><span class="lineno"> 175</span> </div>
|
|
<div class="line"><a name="l00176"></a><span class="lineno"> 176</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00177"></a><span class="lineno"> 177</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00178"></a><span class="lineno"> 178</span> <span class="keyword">template</span> <<span class="keyword">typename</span> OtherT, <span class="keywordtype">int</span> OtherDim></div>
|
|
<div class="line"><a name="l00179"></a><span class="lineno"> 179</span> __host__ __device__ <span class="keywordtype">bool</span></div>
|
|
<div class="line"><a name="l00180"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a3067941f8f8f09fc73e2f06243699825"> 180</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a3067941f8f8f09fc73e2f06243699825">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::isSame</a>(</div>
|
|
<div class="line"><a name="l00181"></a><span class="lineno"> 181</span>  <span class="keyword">const</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<OtherT, OtherDim, InnerContig, IndexT, PtrTraits></a>& rhs)<span class="keyword"> const </span>{</div>
|
|
<div class="line"><a name="l00182"></a><span class="lineno"> 182</span>  <span class="keywordflow">if</span> (Dim != OtherDim) {</div>
|
|
<div class="line"><a name="l00183"></a><span class="lineno"> 183</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
|
|
<div class="line"><a name="l00184"></a><span class="lineno"> 184</span>  }</div>
|
|
<div class="line"><a name="l00185"></a><span class="lineno"> 185</span> </div>
|
|
<div class="line"><a name="l00186"></a><span class="lineno"> 186</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
|
|
<div class="line"><a name="l00187"></a><span class="lineno"> 187</span>  <span class="keywordflow">if</span> (this->getSize(i) != rhs.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(i)) {</div>
|
|
<div class="line"><a name="l00188"></a><span class="lineno"> 188</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
|
|
<div class="line"><a name="l00189"></a><span class="lineno"> 189</span>  }</div>
|
|
<div class="line"><a name="l00190"></a><span class="lineno"> 190</span> </div>
|
|
<div class="line"><a name="l00191"></a><span class="lineno"> 191</span>  <span class="keywordflow">if</span> (this->getStride(i) != rhs.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a0b8bba630f7a1fa217f90b20d298420a">getStride</a>(i)) {</div>
|
|
<div class="line"><a name="l00192"></a><span class="lineno"> 192</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
|
|
<div class="line"><a name="l00193"></a><span class="lineno"> 193</span>  }</div>
|
|
<div class="line"><a name="l00194"></a><span class="lineno"> 194</span>  }</div>
|
|
<div class="line"><a name="l00195"></a><span class="lineno"> 195</span> </div>
|
|
<div class="line"><a name="l00196"></a><span class="lineno"> 196</span>  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
|
|
<div class="line"><a name="l00197"></a><span class="lineno"> 197</span> }</div>
|
|
<div class="line"><a name="l00198"></a><span class="lineno"> 198</span> </div>
|
|
<div class="line"><a name="l00199"></a><span class="lineno"> 199</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00200"></a><span class="lineno"> 200</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00201"></a><span class="lineno"> 201</span> <span class="keyword">template</span> <<span class="keyword">typename</span> OtherT, <span class="keywordtype">int</span> OtherDim></div>
|
|
<div class="line"><a name="l00202"></a><span class="lineno"> 202</span> __host__ __device__ <span class="keywordtype">bool</span></div>
|
|
<div class="line"><a name="l00203"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a22c1e45f81f7f9e5427e2eed19f9cd11"> 203</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a22c1e45f81f7f9e5427e2eed19f9cd11">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::isSameSize</a>(</div>
|
|
<div class="line"><a name="l00204"></a><span class="lineno"> 204</span>  <span class="keyword">const</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<OtherT, OtherDim, InnerContig, IndexT, PtrTraits></a>& rhs)<span class="keyword"> const </span>{</div>
|
|
<div class="line"><a name="l00205"></a><span class="lineno"> 205</span>  <span class="keywordflow">if</span> (Dim != OtherDim) {</div>
|
|
<div class="line"><a name="l00206"></a><span class="lineno"> 206</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
|
|
<div class="line"><a name="l00207"></a><span class="lineno"> 207</span>  }</div>
|
|
<div class="line"><a name="l00208"></a><span class="lineno"> 208</span> </div>
|
|
<div class="line"><a name="l00209"></a><span class="lineno"> 209</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
|
|
<div class="line"><a name="l00210"></a><span class="lineno"> 210</span>  <span class="keywordflow">if</span> (this->getSize(i) != rhs.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(i)) {</div>
|
|
<div class="line"><a name="l00211"></a><span class="lineno"> 211</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
|
|
<div class="line"><a name="l00212"></a><span class="lineno"> 212</span>  }</div>
|
|
<div class="line"><a name="l00213"></a><span class="lineno"> 213</span>  }</div>
|
|
<div class="line"><a name="l00214"></a><span class="lineno"> 214</span> </div>
|
|
<div class="line"><a name="l00215"></a><span class="lineno"> 215</span>  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
|
|
<div class="line"><a name="l00216"></a><span class="lineno"> 216</span> }</div>
|
|
<div class="line"><a name="l00217"></a><span class="lineno"> 217</span> </div>
|
|
<div class="line"><a name="l00218"></a><span class="lineno"> 218</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00219"></a><span class="lineno"> 219</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00220"></a><span class="lineno"> 220</span> <span class="keyword">template</span> <<span class="keyword">typename</span> U></div>
|
|
<div class="line"><a name="l00221"></a><span class="lineno"> 221</span> __host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<U, Dim, InnerContig, IndexT, PtrTraits></a></div>
|
|
<div class="line"><a name="l00222"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a2894f8fdfab8ec3245364a6f9e8a5259"> 222</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2894f8fdfab8ec3245364a6f9e8a5259">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::cast</a>() {</div>
|
|
<div class="line"><a name="l00223"></a><span class="lineno"> 223</span>  static_assert(<span class="keyword">sizeof</span>(U) == <span class="keyword">sizeof</span>(T), <span class="stringliteral">"cast must be to same size object"</span>);</div>
|
|
<div class="line"><a name="l00224"></a><span class="lineno"> 224</span> </div>
|
|
<div class="line"><a name="l00225"></a><span class="lineno"> 225</span>  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<U, Dim, InnerContig, IndexT, PtrTraits></a>(</div>
|
|
<div class="line"><a name="l00226"></a><span class="lineno"> 226</span>  <span class="keyword">reinterpret_cast<</span>U*<span class="keyword">></span>(data_), size_, stride_);</div>
|
|
<div class="line"><a name="l00227"></a><span class="lineno"> 227</span> }</div>
|
|
<div class="line"><a name="l00228"></a><span class="lineno"> 228</span> </div>
|
|
<div class="line"><a name="l00229"></a><span class="lineno"> 229</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00230"></a><span class="lineno"> 230</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00231"></a><span class="lineno"> 231</span> <span class="keyword">template</span> <<span class="keyword">typename</span> U></div>
|
|
<div class="line"><a name="l00232"></a><span class="lineno"> 232</span> __host__ __device__ <span class="keyword">const</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<U, Dim, InnerContig, IndexT, PtrTraits></a></div>
|
|
<div class="line"><a name="l00233"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a79a16bd4300ca8fdba52932c7c97cce9"> 233</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2894f8fdfab8ec3245364a6f9e8a5259">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::cast</a>()<span class="keyword"> const </span>{</div>
|
|
<div class="line"><a name="l00234"></a><span class="lineno"> 234</span>  static_assert(<span class="keyword">sizeof</span>(U) == <span class="keyword">sizeof</span>(T), <span class="stringliteral">"cast must be to same size object"</span>);</div>
|
|
<div class="line"><a name="l00235"></a><span class="lineno"> 235</span> </div>
|
|
<div class="line"><a name="l00236"></a><span class="lineno"> 236</span>  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<U, Dim, InnerContig, IndexT, PtrTraits></a>(</div>
|
|
<div class="line"><a name="l00237"></a><span class="lineno"> 237</span>  <span class="keyword">reinterpret_cast<</span>U*<span class="keyword">></span>(data_), size_, stride_);</div>
|
|
<div class="line"><a name="l00238"></a><span class="lineno"> 238</span> }</div>
|
|
<div class="line"><a name="l00239"></a><span class="lineno"> 239</span> </div>
|
|
<div class="line"><a name="l00240"></a><span class="lineno"> 240</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00241"></a><span class="lineno"> 241</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00242"></a><span class="lineno"> 242</span> <span class="keyword">template</span> <<span class="keyword">typename</span> U></div>
|
|
<div class="line"><a name="l00243"></a><span class="lineno"> 243</span> __host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<U, Dim, InnerContig, IndexT, PtrTraits></a></div>
|
|
<div class="line"><a name="l00244"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a6c9640c365134ccc33cdb2695b016eb3"> 244</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6c9640c365134ccc33cdb2695b016eb3">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::castResize</a>() {</div>
|
|
<div class="line"><a name="l00245"></a><span class="lineno"> 245</span>  static_assert(<span class="keyword">sizeof</span>(U) >= <span class="keyword">sizeof</span>(T), <span class="stringliteral">"only handles greater sizes"</span>);</div>
|
|
<div class="line"><a name="l00246"></a><span class="lineno"> 246</span>  constexpr <span class="keywordtype">int</span> kMultiple = <span class="keyword">sizeof</span>(U) / <span class="keyword">sizeof</span>(T);</div>
|
|
<div class="line"><a name="l00247"></a><span class="lineno"> 247</span> </div>
|
|
<div class="line"><a name="l00248"></a><span class="lineno"> 248</span>  GPU_FAISS_ASSERT(canCastResize<U>());</div>
|
|
<div class="line"><a name="l00249"></a><span class="lineno"> 249</span> </div>
|
|
<div class="line"><a name="l00250"></a><span class="lineno"> 250</span>  IndexT newSize[Dim];</div>
|
|
<div class="line"><a name="l00251"></a><span class="lineno"> 251</span>  IndexT newStride[Dim];</div>
|
|
<div class="line"><a name="l00252"></a><span class="lineno"> 252</span> </div>
|
|
<div class="line"><a name="l00253"></a><span class="lineno"> 253</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim - 1; ++i) {</div>
|
|
<div class="line"><a name="l00254"></a><span class="lineno"> 254</span>  newSize[i] = size_[i];</div>
|
|
<div class="line"><a name="l00255"></a><span class="lineno"> 255</span>  newStride[i] = stride_[i] / kMultiple;</div>
|
|
<div class="line"><a name="l00256"></a><span class="lineno"> 256</span>  }</div>
|
|
<div class="line"><a name="l00257"></a><span class="lineno"> 257</span> </div>
|
|
<div class="line"><a name="l00258"></a><span class="lineno"> 258</span>  newStride[Dim - 1] = 1; <span class="comment">// this is the same as the old stride</span></div>
|
|
<div class="line"><a name="l00259"></a><span class="lineno"> 259</span>  newSize[Dim - 1] = size_[Dim - 1] / kMultiple;</div>
|
|
<div class="line"><a name="l00260"></a><span class="lineno"> 260</span> </div>
|
|
<div class="line"><a name="l00261"></a><span class="lineno"> 261</span>  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<U, Dim, InnerContig, IndexT, PtrTraits></a>(</div>
|
|
<div class="line"><a name="l00262"></a><span class="lineno"> 262</span>  <span class="keyword">reinterpret_cast<</span>U*<span class="keyword">></span>(data_), newSize, newStride);</div>
|
|
<div class="line"><a name="l00263"></a><span class="lineno"> 263</span> }</div>
|
|
<div class="line"><a name="l00264"></a><span class="lineno"> 264</span> </div>
|
|
<div class="line"><a name="l00265"></a><span class="lineno"> 265</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00266"></a><span class="lineno"> 266</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00267"></a><span class="lineno"> 267</span> <span class="keyword">template</span> <<span class="keyword">typename</span> U></div>
|
|
<div class="line"><a name="l00268"></a><span class="lineno"> 268</span> __host__ __device__ <span class="keyword">const</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<U, Dim, InnerContig, IndexT, PtrTraits></a></div>
|
|
<div class="line"><a name="l00269"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#ae06338d9b19c62452c2111682447f863"> 269</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6c9640c365134ccc33cdb2695b016eb3">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::castResize</a>()<span class="keyword"> const </span>{</div>
|
|
<div class="line"><a name="l00270"></a><span class="lineno"> 270</span>  <span class="keywordflow">return</span> <span class="keyword">const_cast<</span><a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits></a>*<span class="keyword">></span>(<span class="keyword">this</span>)-></div>
|
|
<div class="line"><a name="l00271"></a><span class="lineno"> 271</span>  castResize<U>();</div>
|
|
<div class="line"><a name="l00272"></a><span class="lineno"> 272</span> }</div>
|
|
<div class="line"><a name="l00273"></a><span class="lineno"> 273</span> </div>
|
|
<div class="line"><a name="l00274"></a><span class="lineno"> 274</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00275"></a><span class="lineno"> 275</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00276"></a><span class="lineno"> 276</span> <span class="keyword">template</span> <<span class="keyword">typename</span> U></div>
|
|
<div class="line"><a name="l00277"></a><span class="lineno"> 277</span> __host__ __device__ <span class="keywordtype">bool</span></div>
|
|
<div class="line"><a name="l00278"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a7fbbf51f8ef6bea9cc863a86e20d994e"> 278</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a7fbbf51f8ef6bea9cc863a86e20d994e">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::canCastResize</a>()<span class="keyword"> const </span>{</div>
|
|
<div class="line"><a name="l00279"></a><span class="lineno"> 279</span>  static_assert(<span class="keyword">sizeof</span>(U) >= <span class="keyword">sizeof</span>(T), <span class="stringliteral">"only handles greater sizes"</span>);</div>
|
|
<div class="line"><a name="l00280"></a><span class="lineno"> 280</span>  constexpr <span class="keywordtype">int</span> kMultiple = <span class="keyword">sizeof</span>(U) / <span class="keyword">sizeof</span>(T);</div>
|
|
<div class="line"><a name="l00281"></a><span class="lineno"> 281</span> </div>
|
|
<div class="line"><a name="l00282"></a><span class="lineno"> 282</span>  <span class="comment">// Check all outer strides</span></div>
|
|
<div class="line"><a name="l00283"></a><span class="lineno"> 283</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim - 1; ++i) {</div>
|
|
<div class="line"><a name="l00284"></a><span class="lineno"> 284</span>  <span class="keywordflow">if</span> (stride_[i] % kMultiple != 0) {</div>
|
|
<div class="line"><a name="l00285"></a><span class="lineno"> 285</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
|
|
<div class="line"><a name="l00286"></a><span class="lineno"> 286</span>  }</div>
|
|
<div class="line"><a name="l00287"></a><span class="lineno"> 287</span>  }</div>
|
|
<div class="line"><a name="l00288"></a><span class="lineno"> 288</span> </div>
|
|
<div class="line"><a name="l00289"></a><span class="lineno"> 289</span>  <span class="comment">// Check inner size</span></div>
|
|
<div class="line"><a name="l00290"></a><span class="lineno"> 290</span>  <span class="keywordflow">if</span> (size_[Dim - 1] % kMultiple != 0) {</div>
|
|
<div class="line"><a name="l00291"></a><span class="lineno"> 291</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
|
|
<div class="line"><a name="l00292"></a><span class="lineno"> 292</span>  }</div>
|
|
<div class="line"><a name="l00293"></a><span class="lineno"> 293</span> </div>
|
|
<div class="line"><a name="l00294"></a><span class="lineno"> 294</span>  <span class="keywordflow">if</span> (stride_[Dim - 1] != 1) {</div>
|
|
<div class="line"><a name="l00295"></a><span class="lineno"> 295</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
|
|
<div class="line"><a name="l00296"></a><span class="lineno"> 296</span>  }</div>
|
|
<div class="line"><a name="l00297"></a><span class="lineno"> 297</span> </div>
|
|
<div class="line"><a name="l00298"></a><span class="lineno"> 298</span>  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
|
|
<div class="line"><a name="l00299"></a><span class="lineno"> 299</span> }</div>
|
|
<div class="line"><a name="l00300"></a><span class="lineno"> 300</span> </div>
|
|
<div class="line"><a name="l00301"></a><span class="lineno"> 301</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00302"></a><span class="lineno"> 302</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00303"></a><span class="lineno"> 303</span> <span class="keyword">template</span> <<span class="keyword">typename</span> NewIndexT></div>
|
|
<div class="line"><a name="l00304"></a><span class="lineno"> 304</span> __host__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, NewIndexT, PtrTraits></a></div>
|
|
<div class="line"><a name="l00305"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a9f0c817e9751fe02926c2346a97f0350"> 305</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a9f0c817e9751fe02926c2346a97f0350">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::castIndexType</a>()<span class="keyword"> const </span>{</div>
|
|
<div class="line"><a name="l00306"></a><span class="lineno"> 306</span>  <span class="keywordflow">if</span> (<span class="keyword">sizeof</span>(NewIndexT) < <span class="keyword">sizeof</span>(IndexT)) {</div>
|
|
<div class="line"><a name="l00307"></a><span class="lineno"> 307</span>  GPU_FAISS_ASSERT(this->canUseIndexType<NewIndexT>());</div>
|
|
<div class="line"><a name="l00308"></a><span class="lineno"> 308</span>  }</div>
|
|
<div class="line"><a name="l00309"></a><span class="lineno"> 309</span> </div>
|
|
<div class="line"><a name="l00310"></a><span class="lineno"> 310</span>  NewIndexT newSize[Dim];</div>
|
|
<div class="line"><a name="l00311"></a><span class="lineno"> 311</span>  NewIndexT newStride[Dim];</div>
|
|
<div class="line"><a name="l00312"></a><span class="lineno"> 312</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
|
|
<div class="line"><a name="l00313"></a><span class="lineno"> 313</span>  newSize[i] = (NewIndexT) size_[i];</div>
|
|
<div class="line"><a name="l00314"></a><span class="lineno"> 314</span>  newStride[i] = (NewIndexT) stride_[i];</div>
|
|
<div class="line"><a name="l00315"></a><span class="lineno"> 315</span>  }</div>
|
|
<div class="line"><a name="l00316"></a><span class="lineno"> 316</span> </div>
|
|
<div class="line"><a name="l00317"></a><span class="lineno"> 317</span>  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, NewIndexT, PtrTraits></a>(</div>
|
|
<div class="line"><a name="l00318"></a><span class="lineno"> 318</span>  data_, newSize, newStride);</div>
|
|
<div class="line"><a name="l00319"></a><span class="lineno"> 319</span> }</div>
|
|
<div class="line"><a name="l00320"></a><span class="lineno"> 320</span> </div>
|
|
<div class="line"><a name="l00321"></a><span class="lineno"> 321</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00322"></a><span class="lineno"> 322</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00323"></a><span class="lineno"> 323</span> <span class="keyword">template</span> <<span class="keyword">typename</span> NewIndexT></div>
|
|
<div class="line"><a name="l00324"></a><span class="lineno"> 324</span> __host__ <span class="keywordtype">bool</span></div>
|
|
<div class="line"><a name="l00325"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a2ac9dc9fa8d81f2651a1be486c14ba62"> 325</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2ac9dc9fa8d81f2651a1be486c14ba62">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::canUseIndexType</a>()<span class="keyword"> const </span>{</div>
|
|
<div class="line"><a name="l00326"></a><span class="lineno"> 326</span>  static_assert(<span class="keyword">sizeof</span>(<span class="keywordtype">size_t</span>) >= <span class="keyword">sizeof</span>(IndexT),</div>
|
|
<div class="line"><a name="l00327"></a><span class="lineno"> 327</span>  <span class="stringliteral">"index size too large"</span>);</div>
|
|
<div class="line"><a name="l00328"></a><span class="lineno"> 328</span>  static_assert(<span class="keyword">sizeof</span>(<span class="keywordtype">size_t</span>) >= <span class="keyword">sizeof</span>(NewIndexT),</div>
|
|
<div class="line"><a name="l00329"></a><span class="lineno"> 329</span>  <span class="stringliteral">"new index size too large"</span>);</div>
|
|
<div class="line"><a name="l00330"></a><span class="lineno"> 330</span> </div>
|
|
<div class="line"><a name="l00331"></a><span class="lineno"> 331</span>  <span class="comment">// Find maximum offset that can be calculated</span></div>
|
|
<div class="line"><a name="l00332"></a><span class="lineno"> 332</span>  <span class="comment">// FIXME: maybe also consider offset in bytes? multiply by sizeof(T)?</span></div>
|
|
<div class="line"><a name="l00333"></a><span class="lineno"> 333</span>  <span class="keywordtype">size_t</span> maxOffset = 0;</div>
|
|
<div class="line"><a name="l00334"></a><span class="lineno"> 334</span> </div>
|
|
<div class="line"><a name="l00335"></a><span class="lineno"> 335</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
|
|
<div class="line"><a name="l00336"></a><span class="lineno"> 336</span>  <span class="keywordtype">size_t</span> curMaxOffset = (size_t) size_[i] * (<span class="keywordtype">size_t</span>) stride_[i];</div>
|
|
<div class="line"><a name="l00337"></a><span class="lineno"> 337</span>  <span class="keywordflow">if</span> (curMaxOffset > maxOffset) {</div>
|
|
<div class="line"><a name="l00338"></a><span class="lineno"> 338</span>  maxOffset = curMaxOffset;</div>
|
|
<div class="line"><a name="l00339"></a><span class="lineno"> 339</span>  }</div>
|
|
<div class="line"><a name="l00340"></a><span class="lineno"> 340</span>  }</div>
|
|
<div class="line"><a name="l00341"></a><span class="lineno"> 341</span> </div>
|
|
<div class="line"><a name="l00342"></a><span class="lineno"> 342</span>  <span class="keywordflow">if</span> (maxOffset > (<span class="keywordtype">size_t</span>) std::numeric_limits<NewIndexT>::max()) {</div>
|
|
<div class="line"><a name="l00343"></a><span class="lineno"> 343</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
|
|
<div class="line"><a name="l00344"></a><span class="lineno"> 344</span>  }</div>
|
|
<div class="line"><a name="l00345"></a><span class="lineno"> 345</span> </div>
|
|
<div class="line"><a name="l00346"></a><span class="lineno"> 346</span>  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
|
|
<div class="line"><a name="l00347"></a><span class="lineno"> 347</span> }</div>
|
|
<div class="line"><a name="l00348"></a><span class="lineno"> 348</span> </div>
|
|
<div class="line"><a name="l00349"></a><span class="lineno"> 349</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00350"></a><span class="lineno"> 350</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00351"></a><span class="lineno"> 351</span> __host__ __device__ <span class="keywordtype">size_t</span></div>
|
|
<div class="line"><a name="l00352"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a0ba9ab7c1676b7a41a6e6b2e5a490d2f"> 352</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a0ba9ab7c1676b7a41a6e6b2e5a490d2f">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::numElements</a>()<span class="keyword"> const </span>{</div>
|
|
<div class="line"><a name="l00353"></a><span class="lineno"> 353</span>  <span class="keywordtype">size_t</span> size = (size_t) getSize(0);</div>
|
|
<div class="line"><a name="l00354"></a><span class="lineno"> 354</span> </div>
|
|
<div class="line"><a name="l00355"></a><span class="lineno"> 355</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 1; i < Dim; ++i) {</div>
|
|
<div class="line"><a name="l00356"></a><span class="lineno"> 356</span>  size *= (size_t) getSize(i);</div>
|
|
<div class="line"><a name="l00357"></a><span class="lineno"> 357</span>  }</div>
|
|
<div class="line"><a name="l00358"></a><span class="lineno"> 358</span> </div>
|
|
<div class="line"><a name="l00359"></a><span class="lineno"> 359</span>  <span class="keywordflow">return</span> size;</div>
|
|
<div class="line"><a name="l00360"></a><span class="lineno"> 360</span> }</div>
|
|
<div class="line"><a name="l00361"></a><span class="lineno"> 361</span> </div>
|
|
<div class="line"><a name="l00362"></a><span class="lineno"> 362</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00363"></a><span class="lineno"> 363</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00364"></a><span class="lineno"> 364</span> __host__ __device__ <span class="keywordtype">bool</span></div>
|
|
<div class="line"><a name="l00365"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a09019c54911db891c9321fd3b34509c2"> 365</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a09019c54911db891c9321fd3b34509c2">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::isContiguous</a>()<span class="keyword"> const </span>{</div>
|
|
<div class="line"><a name="l00366"></a><span class="lineno"> 366</span>  <span class="keywordtype">long</span> prevSize = 1;</div>
|
|
<div class="line"><a name="l00367"></a><span class="lineno"> 367</span> </div>
|
|
<div class="line"><a name="l00368"></a><span class="lineno"> 368</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = Dim - 1; i >= 0; --i) {</div>
|
|
<div class="line"><a name="l00369"></a><span class="lineno"> 369</span>  <span class="keywordflow">if</span> (getSize(i) != (IndexT) 1) {</div>
|
|
<div class="line"><a name="l00370"></a><span class="lineno"> 370</span>  <span class="keywordflow">if</span> (getStride(i) == prevSize) {</div>
|
|
<div class="line"><a name="l00371"></a><span class="lineno"> 371</span>  prevSize *= getSize(i);</div>
|
|
<div class="line"><a name="l00372"></a><span class="lineno"> 372</span>  } <span class="keywordflow">else</span> {</div>
|
|
<div class="line"><a name="l00373"></a><span class="lineno"> 373</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
|
|
<div class="line"><a name="l00374"></a><span class="lineno"> 374</span>  }</div>
|
|
<div class="line"><a name="l00375"></a><span class="lineno"> 375</span>  }</div>
|
|
<div class="line"><a name="l00376"></a><span class="lineno"> 376</span>  }</div>
|
|
<div class="line"><a name="l00377"></a><span class="lineno"> 377</span> </div>
|
|
<div class="line"><a name="l00378"></a><span class="lineno"> 378</span>  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
|
|
<div class="line"><a name="l00379"></a><span class="lineno"> 379</span> }</div>
|
|
<div class="line"><a name="l00380"></a><span class="lineno"> 380</span> </div>
|
|
<div class="line"><a name="l00381"></a><span class="lineno"> 381</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00382"></a><span class="lineno"> 382</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00383"></a><span class="lineno"> 383</span> __host__ __device__ <span class="keywordtype">bool</span></div>
|
|
<div class="line"><a name="l00384"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a663e3829c395372acdc8d2e71c0bdabe"> 384</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::isConsistentlySized</a>(<span class="keywordtype">int</span> i)<span class="keyword"> const </span>{</div>
|
|
<div class="line"><a name="l00385"></a><span class="lineno"> 385</span>  <span class="keywordflow">if</span> (i == 0 && getStride(i) > 0 && getSize(i) > 0) {</div>
|
|
<div class="line"><a name="l00386"></a><span class="lineno"> 386</span>  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
|
|
<div class="line"><a name="l00387"></a><span class="lineno"> 387</span>  } <span class="keywordflow">else</span> <span class="keywordflow">if</span> ((i > 0) && (i < Dim) && (getStride(i) > 0) &&</div>
|
|
<div class="line"><a name="l00388"></a><span class="lineno"> 388</span>  ((getStride(i - 1) / getStride(i)) >= getSize(i))) {</div>
|
|
<div class="line"><a name="l00389"></a><span class="lineno"> 389</span>  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
|
|
<div class="line"><a name="l00390"></a><span class="lineno"> 390</span>  }</div>
|
|
<div class="line"><a name="l00391"></a><span class="lineno"> 391</span> </div>
|
|
<div class="line"><a name="l00392"></a><span class="lineno"> 392</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
|
|
<div class="line"><a name="l00393"></a><span class="lineno"> 393</span> }</div>
|
|
<div class="line"><a name="l00394"></a><span class="lineno"> 394</span> </div>
|
|
<div class="line"><a name="l00395"></a><span class="lineno"> 395</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00396"></a><span class="lineno"> 396</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00397"></a><span class="lineno"> 397</span> __host__ __device__ <span class="keywordtype">bool</span></div>
|
|
<div class="line"><a name="l00398"></a><span class="lineno"> 398</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::isConsistentlySized</a>()<span class="keyword"> const </span>{</div>
|
|
<div class="line"><a name="l00399"></a><span class="lineno"> 399</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
|
|
<div class="line"><a name="l00400"></a><span class="lineno"> 400</span>  <span class="keywordflow">if</span> (!isConsistentlySized(i)) {</div>
|
|
<div class="line"><a name="l00401"></a><span class="lineno"> 401</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
|
|
<div class="line"><a name="l00402"></a><span class="lineno"> 402</span>  }</div>
|
|
<div class="line"><a name="l00403"></a><span class="lineno"> 403</span>  }</div>
|
|
<div class="line"><a name="l00404"></a><span class="lineno"> 404</span> </div>
|
|
<div class="line"><a name="l00405"></a><span class="lineno"> 405</span>  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
|
|
<div class="line"><a name="l00406"></a><span class="lineno"> 406</span> }</div>
|
|
<div class="line"><a name="l00407"></a><span class="lineno"> 407</span> </div>
|
|
<div class="line"><a name="l00408"></a><span class="lineno"> 408</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00409"></a><span class="lineno"> 409</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00410"></a><span class="lineno"> 410</span> __host__ __device__ <span class="keywordtype">bool</span></div>
|
|
<div class="line"><a name="l00411"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a3f4e3c6afdf4a03308756b6ae6462c38"> 411</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a3f4e3c6afdf4a03308756b6ae6462c38">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::isContiguousDim</a>(<span class="keywordtype">int</span> i)<span class="keyword"> const </span>{</div>
|
|
<div class="line"><a name="l00412"></a><span class="lineno"> 412</span>  <span class="keywordflow">return</span> (i == Dim - 1) || <span class="comment">// just in case</span></div>
|
|
<div class="line"><a name="l00413"></a><span class="lineno"> 413</span>  ((i < Dim - 1) &&</div>
|
|
<div class="line"><a name="l00414"></a><span class="lineno"> 414</span>  ((getStride(i) / getStride(i + 1)) == getSize(i + 1)));</div>
|
|
<div class="line"><a name="l00415"></a><span class="lineno"> 415</span> }</div>
|
|
<div class="line"><a name="l00416"></a><span class="lineno"> 416</span> </div>
|
|
<div class="line"><a name="l00417"></a><span class="lineno"> 417</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00418"></a><span class="lineno"> 418</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00419"></a><span class="lineno"> 419</span> __host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits></a></div>
|
|
<div class="line"><a name="l00420"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a82a3484a6458e3e95bb91d320f2c6731"> 420</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a82a3484a6458e3e95bb91d320f2c6731">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::transpose</a>(<span class="keywordtype">int</span> dim1,</div>
|
|
<div class="line"><a name="l00421"></a><span class="lineno"> 421</span>  <span class="keywordtype">int</span> dim2)<span class="keyword"> const </span>{</div>
|
|
<div class="line"><a name="l00422"></a><span class="lineno"> 422</span>  GPU_FAISS_ASSERT(dim1 >= 0 && dim1 < Dim);</div>
|
|
<div class="line"><a name="l00423"></a><span class="lineno"> 423</span>  GPU_FAISS_ASSERT(dim1 >= 0 && dim2 < Dim);</div>
|
|
<div class="line"><a name="l00424"></a><span class="lineno"> 424</span> </div>
|
|
<div class="line"><a name="l00425"></a><span class="lineno"> 425</span>  <span class="comment">// If a tensor is innermost contiguous, one cannot transpose the innermost</span></div>
|
|
<div class="line"><a name="l00426"></a><span class="lineno"> 426</span>  <span class="comment">// dimension</span></div>
|
|
<div class="line"><a name="l00427"></a><span class="lineno"> 427</span>  <span class="keywordflow">if</span> (InnerContig) {</div>
|
|
<div class="line"><a name="l00428"></a><span class="lineno"> 428</span>  GPU_FAISS_ASSERT(dim1 != Dim - 1 && dim2 != Dim - 1);</div>
|
|
<div class="line"><a name="l00429"></a><span class="lineno"> 429</span>  }</div>
|
|
<div class="line"><a name="l00430"></a><span class="lineno"> 430</span> </div>
|
|
<div class="line"><a name="l00431"></a><span class="lineno"> 431</span>  IndexT newSize[Dim];</div>
|
|
<div class="line"><a name="l00432"></a><span class="lineno"> 432</span>  IndexT newStride[Dim];</div>
|
|
<div class="line"><a name="l00433"></a><span class="lineno"> 433</span> </div>
|
|
<div class="line"><a name="l00434"></a><span class="lineno"> 434</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
|
|
<div class="line"><a name="l00435"></a><span class="lineno"> 435</span>  newSize[i] = size_[i];</div>
|
|
<div class="line"><a name="l00436"></a><span class="lineno"> 436</span>  newStride[i] = stride_[i];</div>
|
|
<div class="line"><a name="l00437"></a><span class="lineno"> 437</span>  }</div>
|
|
<div class="line"><a name="l00438"></a><span class="lineno"> 438</span> </div>
|
|
<div class="line"><a name="l00439"></a><span class="lineno"> 439</span>  IndexT tmp = newSize[dim1];</div>
|
|
<div class="line"><a name="l00440"></a><span class="lineno"> 440</span>  newSize[dim1] = newSize[dim2];</div>
|
|
<div class="line"><a name="l00441"></a><span class="lineno"> 441</span>  newSize[dim2] = tmp;</div>
|
|
<div class="line"><a name="l00442"></a><span class="lineno"> 442</span> </div>
|
|
<div class="line"><a name="l00443"></a><span class="lineno"> 443</span>  tmp = newStride[dim1];</div>
|
|
<div class="line"><a name="l00444"></a><span class="lineno"> 444</span>  newStride[dim1] = newStride[dim2];</div>
|
|
<div class="line"><a name="l00445"></a><span class="lineno"> 445</span>  newStride[dim2] = tmp;</div>
|
|
<div class="line"><a name="l00446"></a><span class="lineno"> 446</span> </div>
|
|
<div class="line"><a name="l00447"></a><span class="lineno"> 447</span>  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits></a>(data_, newSize, newStride);</div>
|
|
<div class="line"><a name="l00448"></a><span class="lineno"> 448</span> }</div>
|
|
<div class="line"><a name="l00449"></a><span class="lineno"> 449</span> </div>
|
|
<div class="line"><a name="l00450"></a><span class="lineno"> 450</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00451"></a><span class="lineno"> 451</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00452"></a><span class="lineno"> 452</span> <span class="keyword">template</span> <<span class="keywordtype">int</span> NewDim></div>
|
|
<div class="line"><a name="l00453"></a><span class="lineno"> 453</span> __host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, NewDim, InnerContig, IndexT, PtrTraits></a></div>
|
|
<div class="line"><a name="l00454"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a309eb97e9c6dbfdecf383343c072d38c"> 454</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a309eb97e9c6dbfdecf383343c072d38c">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::upcastOuter</a>() {</div>
|
|
<div class="line"><a name="l00455"></a><span class="lineno"> 455</span>  <span class="comment">// Can only create tensors of greater dimension</span></div>
|
|
<div class="line"><a name="l00456"></a><span class="lineno"> 456</span>  static_assert(NewDim > Dim, <span class="stringliteral">"Can only upcast to greater dim"</span>);</div>
|
|
<div class="line"><a name="l00457"></a><span class="lineno"> 457</span> </div>
|
|
<div class="line"><a name="l00458"></a><span class="lineno"> 458</span>  IndexT newSize[NewDim];</div>
|
|
<div class="line"><a name="l00459"></a><span class="lineno"> 459</span>  IndexT newStride[NewDim];</div>
|
|
<div class="line"><a name="l00460"></a><span class="lineno"> 460</span> </div>
|
|
<div class="line"><a name="l00461"></a><span class="lineno"> 461</span>  <span class="keywordtype">int</span> shift = NewDim - Dim;</div>
|
|
<div class="line"><a name="l00462"></a><span class="lineno"> 462</span> </div>
|
|
<div class="line"><a name="l00463"></a><span class="lineno"> 463</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < NewDim; ++i) {</div>
|
|
<div class="line"><a name="l00464"></a><span class="lineno"> 464</span>  <span class="keywordflow">if</span> (i < shift) {</div>
|
|
<div class="line"><a name="l00465"></a><span class="lineno"> 465</span>  <span class="comment">// These are the extended dimensions</span></div>
|
|
<div class="line"><a name="l00466"></a><span class="lineno"> 466</span>  newSize[i] = (IndexT) 1;</div>
|
|
<div class="line"><a name="l00467"></a><span class="lineno"> 467</span>  newStride[i] = size_[0] * stride_[0];</div>
|
|
<div class="line"><a name="l00468"></a><span class="lineno"> 468</span>  } <span class="keywordflow">else</span> {</div>
|
|
<div class="line"><a name="l00469"></a><span class="lineno"> 469</span>  <span class="comment">// Shift the remaining dimensions</span></div>
|
|
<div class="line"><a name="l00470"></a><span class="lineno"> 470</span>  newSize[i] = size_[i - shift];</div>
|
|
<div class="line"><a name="l00471"></a><span class="lineno"> 471</span>  newStride[i] = stride_[i - shift];</div>
|
|
<div class="line"><a name="l00472"></a><span class="lineno"> 472</span>  }</div>
|
|
<div class="line"><a name="l00473"></a><span class="lineno"> 473</span>  }</div>
|
|
<div class="line"><a name="l00474"></a><span class="lineno"> 474</span> </div>
|
|
<div class="line"><a name="l00475"></a><span class="lineno"> 475</span>  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, NewDim, InnerContig, IndexT, PtrTraits></a>(</div>
|
|
<div class="line"><a name="l00476"></a><span class="lineno"> 476</span>  data_, newSize, newStride);</div>
|
|
<div class="line"><a name="l00477"></a><span class="lineno"> 477</span> }</div>
|
|
<div class="line"><a name="l00478"></a><span class="lineno"> 478</span> </div>
|
|
<div class="line"><a name="l00479"></a><span class="lineno"> 479</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00480"></a><span class="lineno"> 480</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00481"></a><span class="lineno"> 481</span> <span class="keyword">template</span> <<span class="keywordtype">int</span> NewDim></div>
|
|
<div class="line"><a name="l00482"></a><span class="lineno"> 482</span> __host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, NewDim, InnerContig, IndexT, PtrTraits></a></div>
|
|
<div class="line"><a name="l00483"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#aee5cf46d16344e2a055cf63adb07d24a"> 483</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#aee5cf46d16344e2a055cf63adb07d24a">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::upcastInner</a>() {</div>
|
|
<div class="line"><a name="l00484"></a><span class="lineno"> 484</span>  <span class="comment">// Can only create tensors of greater dimension</span></div>
|
|
<div class="line"><a name="l00485"></a><span class="lineno"> 485</span>  static_assert(NewDim > Dim, <span class="stringliteral">"Can only upcast to greater dim"</span>);</div>
|
|
<div class="line"><a name="l00486"></a><span class="lineno"> 486</span> </div>
|
|
<div class="line"><a name="l00487"></a><span class="lineno"> 487</span>  IndexT newSize[NewDim];</div>
|
|
<div class="line"><a name="l00488"></a><span class="lineno"> 488</span>  IndexT newStride[NewDim];</div>
|
|
<div class="line"><a name="l00489"></a><span class="lineno"> 489</span> </div>
|
|
<div class="line"><a name="l00490"></a><span class="lineno"> 490</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < NewDim; ++i) {</div>
|
|
<div class="line"><a name="l00491"></a><span class="lineno"> 491</span>  <span class="keywordflow">if</span> (i < Dim) {</div>
|
|
<div class="line"><a name="l00492"></a><span class="lineno"> 492</span>  <span class="comment">// Existing dimensions get copied over</span></div>
|
|
<div class="line"><a name="l00493"></a><span class="lineno"> 493</span>  newSize[i] = size_[i];</div>
|
|
<div class="line"><a name="l00494"></a><span class="lineno"> 494</span>  newStride[i] = stride_[i];</div>
|
|
<div class="line"><a name="l00495"></a><span class="lineno"> 495</span>  } <span class="keywordflow">else</span> {</div>
|
|
<div class="line"><a name="l00496"></a><span class="lineno"> 496</span>  <span class="comment">// Extended dimensions</span></div>
|
|
<div class="line"><a name="l00497"></a><span class="lineno"> 497</span>  newSize[i] = (IndexT) 1;</div>
|
|
<div class="line"><a name="l00498"></a><span class="lineno"> 498</span>  newStride[i] = (IndexT) 1;</div>
|
|
<div class="line"><a name="l00499"></a><span class="lineno"> 499</span>  }</div>
|
|
<div class="line"><a name="l00500"></a><span class="lineno"> 500</span>  }</div>
|
|
<div class="line"><a name="l00501"></a><span class="lineno"> 501</span> </div>
|
|
<div class="line"><a name="l00502"></a><span class="lineno"> 502</span>  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, NewDim, InnerContig, IndexT, PtrTraits></a>(</div>
|
|
<div class="line"><a name="l00503"></a><span class="lineno"> 503</span>  data_, newSize, newStride);</div>
|
|
<div class="line"><a name="l00504"></a><span class="lineno"> 504</span> }</div>
|
|
<div class="line"><a name="l00505"></a><span class="lineno"> 505</span> </div>
|
|
<div class="line"><a name="l00506"></a><span class="lineno"> 506</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00507"></a><span class="lineno"> 507</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00508"></a><span class="lineno"> 508</span> <span class="keyword">template</span> <<span class="keywordtype">int</span> NewDim></div>
|
|
<div class="line"><a name="l00509"></a><span class="lineno"> 509</span> __host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, NewDim, InnerContig, IndexT, PtrTraits></a></div>
|
|
<div class="line"><a name="l00510"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a2185b0c1c2c06cc3a4dab6a88eb6d001"> 510</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2185b0c1c2c06cc3a4dab6a88eb6d001">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::downcastOuter</a>() {</div>
|
|
<div class="line"><a name="l00511"></a><span class="lineno"> 511</span>  <span class="comment">// Can only create tensors of lesser dimension</span></div>
|
|
<div class="line"><a name="l00512"></a><span class="lineno"> 512</span>  static_assert(NewDim < Dim, <span class="stringliteral">"Can only downcast to lesser dim"</span>);</div>
|
|
<div class="line"><a name="l00513"></a><span class="lineno"> 513</span> </div>
|
|
<div class="line"><a name="l00514"></a><span class="lineno"> 514</span>  <span class="comment">// We can't downcast non-contiguous tensors, since it leaves</span></div>
|
|
<div class="line"><a name="l00515"></a><span class="lineno"> 515</span>  <span class="comment">// garbage data in the tensor. The tensor needs to be contiguous</span></div>
|
|
<div class="line"><a name="l00516"></a><span class="lineno"> 516</span>  <span class="comment">// in all of the dimensions we are collapsing (no padding in</span></div>
|
|
<div class="line"><a name="l00517"></a><span class="lineno"> 517</span>  <span class="comment">// them).</span></div>
|
|
<div class="line"><a name="l00518"></a><span class="lineno"> 518</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim - NewDim; ++i) {</div>
|
|
<div class="line"><a name="l00519"></a><span class="lineno"> 519</span>  <span class="keywordtype">bool</span> cont = isContiguousDim(i);</div>
|
|
<div class="line"><a name="l00520"></a><span class="lineno"> 520</span>  GPU_FAISS_ASSERT(cont);</div>
|
|
<div class="line"><a name="l00521"></a><span class="lineno"> 521</span>  }</div>
|
|
<div class="line"><a name="l00522"></a><span class="lineno"> 522</span> </div>
|
|
<div class="line"><a name="l00523"></a><span class="lineno"> 523</span>  IndexT newSize[NewDim];</div>
|
|
<div class="line"><a name="l00524"></a><span class="lineno"> 524</span>  IndexT newStride[NewDim];</div>
|
|
<div class="line"><a name="l00525"></a><span class="lineno"> 525</span> </div>
|
|
<div class="line"><a name="l00526"></a><span class="lineno"> 526</span>  <span class="keywordtype">int</span> ignoredDims = Dim - NewDim;</div>
|
|
<div class="line"><a name="l00527"></a><span class="lineno"> 527</span>  IndexT collapsedSize = 1;</div>
|
|
<div class="line"><a name="l00528"></a><span class="lineno"> 528</span> </div>
|
|
<div class="line"><a name="l00529"></a><span class="lineno"> 529</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
|
|
<div class="line"><a name="l00530"></a><span class="lineno"> 530</span>  <span class="keywordflow">if</span> (i < ignoredDims) {</div>
|
|
<div class="line"><a name="l00531"></a><span class="lineno"> 531</span>  <span class="comment">// Collapse these dimensions</span></div>
|
|
<div class="line"><a name="l00532"></a><span class="lineno"> 532</span>  collapsedSize *= getSize(i);</div>
|
|
<div class="line"><a name="l00533"></a><span class="lineno"> 533</span>  } <span class="keywordflow">else</span> {</div>
|
|
<div class="line"><a name="l00534"></a><span class="lineno"> 534</span>  <span class="comment">// Non-collapsed dimensions</span></div>
|
|
<div class="line"><a name="l00535"></a><span class="lineno"> 535</span>  <span class="keywordflow">if</span> (i == ignoredDims) {</div>
|
|
<div class="line"><a name="l00536"></a><span class="lineno"> 536</span>  <span class="comment">// This is the first non-collapsed dimension</span></div>
|
|
<div class="line"><a name="l00537"></a><span class="lineno"> 537</span>  newSize[i - ignoredDims] = collapsedSize * getSize(i);</div>
|
|
<div class="line"><a name="l00538"></a><span class="lineno"> 538</span>  } <span class="keywordflow">else</span> {</div>
|
|
<div class="line"><a name="l00539"></a><span class="lineno"> 539</span>  <span class="comment">// Subsequent non-collapsed dimensions</span></div>
|
|
<div class="line"><a name="l00540"></a><span class="lineno"> 540</span>  newSize[i - ignoredDims] = getSize(i);</div>
|
|
<div class="line"><a name="l00541"></a><span class="lineno"> 541</span>  }</div>
|
|
<div class="line"><a name="l00542"></a><span class="lineno"> 542</span> </div>
|
|
<div class="line"><a name="l00543"></a><span class="lineno"> 543</span>  newStride[i - ignoredDims] = getStride(i);</div>
|
|
<div class="line"><a name="l00544"></a><span class="lineno"> 544</span>  }</div>
|
|
<div class="line"><a name="l00545"></a><span class="lineno"> 545</span>  }</div>
|
|
<div class="line"><a name="l00546"></a><span class="lineno"> 546</span> </div>
|
|
<div class="line"><a name="l00547"></a><span class="lineno"> 547</span>  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, NewDim, InnerContig, IndexT, PtrTraits></a>(</div>
|
|
<div class="line"><a name="l00548"></a><span class="lineno"> 548</span>  data_, newSize, newStride);</div>
|
|
<div class="line"><a name="l00549"></a><span class="lineno"> 549</span> }</div>
|
|
<div class="line"><a name="l00550"></a><span class="lineno"> 550</span> </div>
|
|
<div class="line"><a name="l00551"></a><span class="lineno"> 551</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00552"></a><span class="lineno"> 552</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00553"></a><span class="lineno"> 553</span> <span class="keyword">template</span> <<span class="keywordtype">int</span> NewDim></div>
|
|
<div class="line"><a name="l00554"></a><span class="lineno"> 554</span> __host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, NewDim, InnerContig, IndexT, PtrTraits></a></div>
|
|
<div class="line"><a name="l00555"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a6a43125c6f429f28161d59f19eb8e5c5"> 555</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6a43125c6f429f28161d59f19eb8e5c5">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::downcastInner</a>() {</div>
|
|
<div class="line"><a name="l00556"></a><span class="lineno"> 556</span>  <span class="comment">// Can only create tensors of lesser dimension</span></div>
|
|
<div class="line"><a name="l00557"></a><span class="lineno"> 557</span>  static_assert(NewDim < Dim, <span class="stringliteral">"Can only downcast to lesser dim"</span>);</div>
|
|
<div class="line"><a name="l00558"></a><span class="lineno"> 558</span> </div>
|
|
<div class="line"><a name="l00559"></a><span class="lineno"> 559</span>  <span class="comment">// We can't downcast non-contiguous tensors, since it leaves</span></div>
|
|
<div class="line"><a name="l00560"></a><span class="lineno"> 560</span>  <span class="comment">// garbage data in the tensor. The tensor needs to be contiguous</span></div>
|
|
<div class="line"><a name="l00561"></a><span class="lineno"> 561</span>  <span class="comment">// in all of the dimensions we are collapsing (no padding in</span></div>
|
|
<div class="line"><a name="l00562"></a><span class="lineno"> 562</span>  <span class="comment">// them).</span></div>
|
|
<div class="line"><a name="l00563"></a><span class="lineno"> 563</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = NewDim; i < Dim; ++i) {</div>
|
|
<div class="line"><a name="l00564"></a><span class="lineno"> 564</span>  GPU_FAISS_ASSERT(isContiguousDim(i));</div>
|
|
<div class="line"><a name="l00565"></a><span class="lineno"> 565</span>  }</div>
|
|
<div class="line"><a name="l00566"></a><span class="lineno"> 566</span> </div>
|
|
<div class="line"><a name="l00567"></a><span class="lineno"> 567</span>  IndexT newSize[NewDim];</div>
|
|
<div class="line"><a name="l00568"></a><span class="lineno"> 568</span>  IndexT newStride[NewDim];</div>
|
|
<div class="line"><a name="l00569"></a><span class="lineno"> 569</span> </div>
|
|
<div class="line"><a name="l00570"></a><span class="lineno"> 570</span>  IndexT collapsedSize = 1;</div>
|
|
<div class="line"><a name="l00571"></a><span class="lineno"> 571</span> </div>
|
|
<div class="line"><a name="l00572"></a><span class="lineno"> 572</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = Dim - 1; i >= 0; --i) {</div>
|
|
<div class="line"><a name="l00573"></a><span class="lineno"> 573</span>  <span class="keywordflow">if</span> (i >= NewDim) {</div>
|
|
<div class="line"><a name="l00574"></a><span class="lineno"> 574</span>  <span class="comment">// Collapse these dimensions</span></div>
|
|
<div class="line"><a name="l00575"></a><span class="lineno"> 575</span>  collapsedSize *= getSize(i);</div>
|
|
<div class="line"><a name="l00576"></a><span class="lineno"> 576</span>  } <span class="keywordflow">else</span> {</div>
|
|
<div class="line"><a name="l00577"></a><span class="lineno"> 577</span>  <span class="comment">// Non-collapsed dimensions</span></div>
|
|
<div class="line"><a name="l00578"></a><span class="lineno"> 578</span>  <span class="keywordflow">if</span> (i == NewDim - 1) {</div>
|
|
<div class="line"><a name="l00579"></a><span class="lineno"> 579</span>  <span class="comment">// This is the first non-collapsed dimension</span></div>
|
|
<div class="line"><a name="l00580"></a><span class="lineno"> 580</span>  newSize[i] = collapsedSize * getSize(i);</div>
|
|
<div class="line"><a name="l00581"></a><span class="lineno"> 581</span>  newStride[i] = getStride(Dim - 1);</div>
|
|
<div class="line"><a name="l00582"></a><span class="lineno"> 582</span>  } <span class="keywordflow">else</span> {</div>
|
|
<div class="line"><a name="l00583"></a><span class="lineno"> 583</span>  <span class="comment">// Subsequent non-collapsed dimensions</span></div>
|
|
<div class="line"><a name="l00584"></a><span class="lineno"> 584</span>  newSize[i] = getSize(i);</div>
|
|
<div class="line"><a name="l00585"></a><span class="lineno"> 585</span>  newStride[i] = getStride(i);</div>
|
|
<div class="line"><a name="l00586"></a><span class="lineno"> 586</span>  }</div>
|
|
<div class="line"><a name="l00587"></a><span class="lineno"> 587</span>  }</div>
|
|
<div class="line"><a name="l00588"></a><span class="lineno"> 588</span>  }</div>
|
|
<div class="line"><a name="l00589"></a><span class="lineno"> 589</span> </div>
|
|
<div class="line"><a name="l00590"></a><span class="lineno"> 590</span>  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, NewDim, InnerContig, IndexT, PtrTraits></a>(</div>
|
|
<div class="line"><a name="l00591"></a><span class="lineno"> 591</span>  data_, newSize, newStride);</div>
|
|
<div class="line"><a name="l00592"></a><span class="lineno"> 592</span> }</div>
|
|
<div class="line"><a name="l00593"></a><span class="lineno"> 593</span> </div>
|
|
<div class="line"><a name="l00594"></a><span class="lineno"> 594</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00595"></a><span class="lineno"> 595</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00596"></a><span class="lineno"> 596</span> <span class="keyword">template</span> <<span class="keywordtype">int</span> SubDim></div>
|
|
<div class="line"><a name="l00597"></a><span class="lineno"> 597</span> __host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, SubDim, InnerContig, IndexT, PtrTraits></a></div>
|
|
<div class="line"><a name="l00598"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a74dbc09519c9c14479b2d18f2e5042e8"> 598</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a35a63cfa4034a8ee14a999132d8a1828">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::view</a>(DataPtrType at) {</div>
|
|
<div class="line"><a name="l00599"></a><span class="lineno"> 599</span>  static_assert(SubDim >= 1 && SubDim < Dim,</div>
|
|
<div class="line"><a name="l00600"></a><span class="lineno"> 600</span>  <span class="stringliteral">"can only create view of lesser dim"</span>);</div>
|
|
<div class="line"><a name="l00601"></a><span class="lineno"> 601</span> </div>
|
|
<div class="line"><a name="l00602"></a><span class="lineno"> 602</span>  IndexT viewSizes[SubDim];</div>
|
|
<div class="line"><a name="l00603"></a><span class="lineno"> 603</span>  IndexT viewStrides[SubDim];</div>
|
|
<div class="line"><a name="l00604"></a><span class="lineno"> 604</span> </div>
|
|
<div class="line"><a name="l00605"></a><span class="lineno"> 605</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < SubDim; ++i) {</div>
|
|
<div class="line"><a name="l00606"></a><span class="lineno"> 606</span>  viewSizes[i] = size_[Dim - SubDim + i];</div>
|
|
<div class="line"><a name="l00607"></a><span class="lineno"> 607</span>  viewStrides[i] = stride_[Dim - SubDim + i];</div>
|
|
<div class="line"><a name="l00608"></a><span class="lineno"> 608</span>  }</div>
|
|
<div class="line"><a name="l00609"></a><span class="lineno"> 609</span> </div>
|
|
<div class="line"><a name="l00610"></a><span class="lineno"> 610</span>  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, SubDim, InnerContig, IndexT, PtrTraits></a>(</div>
|
|
<div class="line"><a name="l00611"></a><span class="lineno"> 611</span>  at, viewSizes, viewStrides);</div>
|
|
<div class="line"><a name="l00612"></a><span class="lineno"> 612</span> }</div>
|
|
<div class="line"><a name="l00613"></a><span class="lineno"> 613</span> </div>
|
|
<div class="line"><a name="l00614"></a><span class="lineno"> 614</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00615"></a><span class="lineno"> 615</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00616"></a><span class="lineno"> 616</span> <span class="keyword">template</span> <<span class="keywordtype">int</span> SubDim></div>
|
|
<div class="line"><a name="l00617"></a><span class="lineno"> 617</span> __host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, SubDim, InnerContig, IndexT, PtrTraits></a></div>
|
|
<div class="line"><a name="l00618"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a35a63cfa4034a8ee14a999132d8a1828"> 618</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a35a63cfa4034a8ee14a999132d8a1828">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::view</a>() {</div>
|
|
<div class="line"><a name="l00619"></a><span class="lineno"> 619</span>  <span class="keywordflow">return</span> view<SubDim>(data_);</div>
|
|
<div class="line"><a name="l00620"></a><span class="lineno"> 620</span> }</div>
|
|
<div class="line"><a name="l00621"></a><span class="lineno"> 621</span> </div>
|
|
<div class="line"><a name="l00622"></a><span class="lineno"> 622</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00623"></a><span class="lineno"> 623</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00624"></a><span class="lineno"> 624</span> __host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits></a></div>
|
|
<div class="line"><a name="l00625"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#ac2d0fc7199901a8e0788b58f0970b133"> 625</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#ac2d0fc7199901a8e0788b58f0970b133">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::narrowOutermost</a>(IndexT start,</div>
|
|
<div class="line"><a name="l00626"></a><span class="lineno"> 626</span>  IndexT size) {</div>
|
|
<div class="line"><a name="l00627"></a><span class="lineno"> 627</span>  <span class="keywordflow">return</span> this->narrow(0, start, size);</div>
|
|
<div class="line"><a name="l00628"></a><span class="lineno"> 628</span> }</div>
|
|
<div class="line"><a name="l00629"></a><span class="lineno"> 629</span> </div>
|
|
<div class="line"><a name="l00630"></a><span class="lineno"> 630</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00631"></a><span class="lineno"> 631</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00632"></a><span class="lineno"> 632</span> __host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits></a></div>
|
|
<div class="line"><a name="l00633"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#ab6db6bf86dd0f7e877af3a6ae2100fe3"> 633</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#ab6db6bf86dd0f7e877af3a6ae2100fe3">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::narrow</a>(<span class="keywordtype">int</span> dim,</div>
|
|
<div class="line"><a name="l00634"></a><span class="lineno"> 634</span>  IndexT start,</div>
|
|
<div class="line"><a name="l00635"></a><span class="lineno"> 635</span>  IndexT size) {</div>
|
|
<div class="line"><a name="l00636"></a><span class="lineno"> 636</span>  DataPtrType newData = data_;</div>
|
|
<div class="line"><a name="l00637"></a><span class="lineno"> 637</span> </div>
|
|
<div class="line"><a name="l00638"></a><span class="lineno"> 638</span>  GPU_FAISS_ASSERT(start >= 0 &&</div>
|
|
<div class="line"><a name="l00639"></a><span class="lineno"> 639</span>  start < size_[dim] &&</div>
|
|
<div class="line"><a name="l00640"></a><span class="lineno"> 640</span>  (start + size) <= size_[dim]);</div>
|
|
<div class="line"><a name="l00641"></a><span class="lineno"> 641</span> </div>
|
|
<div class="line"><a name="l00642"></a><span class="lineno"> 642</span>  <span class="keywordflow">if</span> (start > 0) {</div>
|
|
<div class="line"><a name="l00643"></a><span class="lineno"> 643</span>  newData += (size_t) start * stride_[dim];</div>
|
|
<div class="line"><a name="l00644"></a><span class="lineno"> 644</span>  }</div>
|
|
<div class="line"><a name="l00645"></a><span class="lineno"> 645</span> </div>
|
|
<div class="line"><a name="l00646"></a><span class="lineno"> 646</span>  IndexT newSize[Dim];</div>
|
|
<div class="line"><a name="l00647"></a><span class="lineno"> 647</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
|
|
<div class="line"><a name="l00648"></a><span class="lineno"> 648</span>  <span class="keywordflow">if</span> (i == dim) {</div>
|
|
<div class="line"><a name="l00649"></a><span class="lineno"> 649</span>  GPU_FAISS_ASSERT(start + size <= size_[dim]);</div>
|
|
<div class="line"><a name="l00650"></a><span class="lineno"> 650</span>  newSize[i] = size;</div>
|
|
<div class="line"><a name="l00651"></a><span class="lineno"> 651</span>  } <span class="keywordflow">else</span> {</div>
|
|
<div class="line"><a name="l00652"></a><span class="lineno"> 652</span>  newSize[i] = size_[i];</div>
|
|
<div class="line"><a name="l00653"></a><span class="lineno"> 653</span>  }</div>
|
|
<div class="line"><a name="l00654"></a><span class="lineno"> 654</span>  }</div>
|
|
<div class="line"><a name="l00655"></a><span class="lineno"> 655</span> </div>
|
|
<div class="line"><a name="l00656"></a><span class="lineno"> 656</span>  <span class="comment">// If we were innermost contiguous before, we are still innermost contiguous</span></div>
|
|
<div class="line"><a name="l00657"></a><span class="lineno"> 657</span>  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits></a>(newData, newSize, stride_);</div>
|
|
<div class="line"><a name="l00658"></a><span class="lineno"> 658</span> }</div>
|
|
<div class="line"><a name="l00659"></a><span class="lineno"> 659</span> </div>
|
|
<div class="line"><a name="l00660"></a><span class="lineno"> 660</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
|
|
<div class="line"><a name="l00661"></a><span class="lineno"> 661</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
|
|
<div class="line"><a name="l00662"></a><span class="lineno"> 662</span> <span class="keyword">template</span> <<span class="keywordtype">int</span> NewDim></div>
|
|
<div class="line"><a name="l00663"></a><span class="lineno"> 663</span> __host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, NewDim, InnerContig, IndexT, PtrTraits></a></div>
|
|
<div class="line"><a name="l00664"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a665d97851f0929cad7fc76f945b64c97"> 664</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a35a63cfa4034a8ee14a999132d8a1828">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::view</a>(</div>
|
|
<div class="line"><a name="l00665"></a><span class="lineno"> 665</span>  std::initializer_list<IndexT> sizes) {</div>
|
|
<div class="line"><a name="l00666"></a><span class="lineno"> 666</span>  GPU_FAISS_ASSERT(this->isContiguous());</div>
|
|
<div class="line"><a name="l00667"></a><span class="lineno"> 667</span> </div>
|
|
<div class="line"><a name="l00668"></a><span class="lineno"> 668</span>  GPU_FAISS_ASSERT(sizes.size() == NewDim);</div>
|
|
<div class="line"><a name="l00669"></a><span class="lineno"> 669</span> </div>
|
|
<div class="line"><a name="l00670"></a><span class="lineno"> 670</span>  <span class="comment">// The total size of the new view must be the same as the total size</span></div>
|
|
<div class="line"><a name="l00671"></a><span class="lineno"> 671</span>  <span class="comment">// of the old view</span></div>
|
|
<div class="line"><a name="l00672"></a><span class="lineno"> 672</span>  <span class="keywordtype">size_t</span> curSize = numElements();</div>
|
|
<div class="line"><a name="l00673"></a><span class="lineno"> 673</span>  <span class="keywordtype">size_t</span> newSize = 1;</div>
|
|
<div class="line"><a name="l00674"></a><span class="lineno"> 674</span> </div>
|
|
<div class="line"><a name="l00675"></a><span class="lineno"> 675</span>  <span class="keywordflow">for</span> (<span class="keyword">auto</span> s : sizes) {</div>
|
|
<div class="line"><a name="l00676"></a><span class="lineno"> 676</span>  newSize *= s;</div>
|
|
<div class="line"><a name="l00677"></a><span class="lineno"> 677</span>  }</div>
|
|
<div class="line"><a name="l00678"></a><span class="lineno"> 678</span> </div>
|
|
<div class="line"><a name="l00679"></a><span class="lineno"> 679</span>  GPU_FAISS_ASSERT(curSize == newSize);</div>
|
|
<div class="line"><a name="l00680"></a><span class="lineno"> 680</span>  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, NewDim, true, IndexT, PtrTraits></a>(data(), sizes);</div>
|
|
<div class="line"><a name="l00681"></a><span class="lineno"> 681</span> }</div>
|
|
<div class="line"><a name="l00682"></a><span class="lineno"> 682</span> </div>
|
|
<div class="line"><a name="l00683"></a><span class="lineno"> 683</span> } } <span class="comment">// namespace</span></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a309eb97e9c6dbfdecf383343c072d38c"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a309eb97e9c6dbfdecf383343c072d38c">faiss::gpu::Tensor::upcastOuter</a></div><div class="ttdeci">__host__ __device__ Tensor< T, NewDim, InnerContig, IndexT, PtrTraits > upcastOuter()</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00454">Tensor-inl.cuh:454</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a9f0c817e9751fe02926c2346a97f0350"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a9f0c817e9751fe02926c2346a97f0350">faiss::gpu::Tensor::castIndexType</a></div><div class="ttdeci">__host__ Tensor< T, Dim, InnerContig, NewIndexT, PtrTraits > castIndexType() const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00305">Tensor-inl.cuh:305</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a3f4e3c6afdf4a03308756b6ae6462c38"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a3f4e3c6afdf4a03308756b6ae6462c38">faiss::gpu::Tensor::isContiguousDim</a></div><div class="ttdeci">__host__ __device__ bool isContiguousDim(int i) const </div><div class="ttdoc">Returns true if the given dimension index has no padding. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00411">Tensor-inl.cuh:411</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a2894f8fdfab8ec3245364a6f9e8a5259"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a2894f8fdfab8ec3245364a6f9e8a5259">faiss::gpu::Tensor::cast</a></div><div class="ttdeci">__host__ __device__ Tensor< U, Dim, InnerContig, IndexT, PtrTraits > cast()</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00222">Tensor-inl.cuh:222</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a0ba9ab7c1676b7a41a6e6b2e5a490d2f"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a0ba9ab7c1676b7a41a6e6b2e5a490d2f">faiss::gpu::Tensor::numElements</a></div><div class="ttdeci">__host__ __device__ size_t numElements() const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00352">Tensor-inl.cuh:352</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a2185b0c1c2c06cc3a4dab6a88eb6d001"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a2185b0c1c2c06cc3a4dab6a88eb6d001">faiss::gpu::Tensor::downcastOuter</a></div><div class="ttdeci">__host__ __device__ Tensor< T, NewDim, InnerContig, IndexT, PtrTraits > downcastOuter()</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00510">Tensor-inl.cuh:510</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a7fbbf51f8ef6bea9cc863a86e20d994e"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a7fbbf51f8ef6bea9cc863a86e20d994e">faiss::gpu::Tensor::canCastResize</a></div><div class="ttdeci">__host__ __device__ bool canCastResize() const </div><div class="ttdoc">Returns true if we can castResize() this tensor to the new type. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00278">Tensor-inl.cuh:278</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a8ae7b3f95991125a5648c3b78afd40bd"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">faiss::gpu::Tensor::Tensor</a></div><div class="ttdeci">__host__ __device__ Tensor()</div><div class="ttdoc">Default constructor. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00020">Tensor-inl.cuh:20</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_aee5cf46d16344e2a055cf63adb07d24a"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#aee5cf46d16344e2a055cf63adb07d24a">faiss::gpu::Tensor::upcastInner</a></div><div class="ttdeci">__host__ __device__ Tensor< T, NewDim, InnerContig, IndexT, PtrTraits > upcastInner()</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00483">Tensor-inl.cuh:483</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_ac2d0fc7199901a8e0788b58f0970b133"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#ac2d0fc7199901a8e0788b58f0970b133">faiss::gpu::Tensor::narrowOutermost</a></div><div class="ttdeci">__host__ __device__ Tensor< T, Dim, InnerContig, IndexT, PtrTraits > narrowOutermost(IndexT start, IndexT size)</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00625">Tensor-inl.cuh:625</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_af4b8fe4b632cdca51ee7972ed93fc3fa"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">faiss::gpu::Tensor::stride_</a></div><div class="ttdeci">IndexT stride_[Dim]</div><div class="ttdoc">Array of strides (in sizeof(T) terms) per each dimension. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00349">Tensor.cuh:349</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a09019c54911db891c9321fd3b34509c2"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a09019c54911db891c9321fd3b34509c2">faiss::gpu::Tensor::isContiguous</a></div><div class="ttdeci">__host__ __device__ bool isContiguous() const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00365">Tensor-inl.cuh:365</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_abc0ecc4f882ee09632b5a06be0619adb"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#abc0ecc4f882ee09632b5a06be0619adb">faiss::gpu::Tensor::sizes</a></div><div class="ttdeci">__host__ __device__ const IndexT * sizes() const </div><div class="ttdoc">Returns the size array. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00247">Tensor.cuh:247</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a6dc00c182a92389b74c89ba7fcab40d3"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a6dc00c182a92389b74c89ba7fcab40d3">faiss::gpu::Tensor::copyFrom</a></div><div class="ttdeci">__host__ void copyFrom(Tensor< T, Dim, InnerContig, IndexT, PtrTraits > &t, cudaStream_t stream)</div><div class="ttdoc">Copies a tensor into ourselves; sizes must match. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00101">Tensor-inl.cuh:101</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_ad96fbf0f5e7c06a1031b8b18f7fc01d7"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#ad96fbf0f5e7c06a1031b8b18f7fc01d7">faiss::gpu::Tensor::size_</a></div><div class="ttdeci">IndexT size_[Dim]</div><div class="ttdoc">Size per each dimension. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00352">Tensor.cuh:352</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a87a777247486756e99060547a3cc833a"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a87a777247486756e99060547a3cc833a">faiss::gpu::Tensor::strides</a></div><div class="ttdeci">__host__ __device__ const IndexT * strides() const </div><div class="ttdoc">Returns the stride array. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00252">Tensor.cuh:252</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a6699c311648457f257afa340c61f417c"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">faiss::gpu::Tensor::getSize</a></div><div class="ttdeci">__host__ __device__ IndexT getSize(int i) const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00226">Tensor.cuh:226</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a22c1e45f81f7f9e5427e2eed19f9cd11"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a22c1e45f81f7f9e5427e2eed19f9cd11">faiss::gpu::Tensor::isSameSize</a></div><div class="ttdeci">__host__ __device__ bool isSameSize(const Tensor< OtherT, OtherDim, InnerContig, IndexT, PtrTraits > &rhs) const </div><div class="ttdoc">Returns true if the two tensors are of the same dimensionality and size. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00203">Tensor-inl.cuh:203</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a6a43125c6f429f28161d59f19eb8e5c5"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a6a43125c6f429f28161d59f19eb8e5c5">faiss::gpu::Tensor::downcastInner</a></div><div class="ttdeci">__host__ __device__ Tensor< T, NewDim, InnerContig, IndexT, PtrTraits > downcastInner()</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00555">Tensor-inl.cuh:555</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_ab6db6bf86dd0f7e877af3a6ae2100fe3"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#ab6db6bf86dd0f7e877af3a6ae2100fe3">faiss::gpu::Tensor::narrow</a></div><div class="ttdeci">__host__ __device__ Tensor< T, Dim, InnerContig, IndexT, PtrTraits > narrow(int dim, IndexT start, IndexT size)</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00633">Tensor-inl.cuh:633</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a50411ce4d0fa32ef715e3321b6e33212"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">faiss::gpu::Tensor::data</a></div><div class="ttdeci">__host__ __device__ DataPtrType data()</div><div class="ttdoc">Returns a raw pointer to the start of our data. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00178">Tensor.cuh:178</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a6cc21376070a03d77661d6e333972c6a"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a6cc21376070a03d77661d6e333972c6a">faiss::gpu::Tensor::copyTo</a></div><div class="ttdeci">__host__ void copyTo(Tensor< T, Dim, InnerContig, IndexT, PtrTraits > &t, cudaStream_t stream)</div><div class="ttdoc">Copies ourselves into a tensor; sizes must match. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00140">Tensor-inl.cuh:140</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html">faiss::gpu::Tensor</a></div><div class="ttdoc">Our tensor type. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00030">Tensor.cuh:30</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a2ac9dc9fa8d81f2651a1be486c14ba62"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a2ac9dc9fa8d81f2651a1be486c14ba62">faiss::gpu::Tensor::canUseIndexType</a></div><div class="ttdeci">__host__ bool canUseIndexType() const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00325">Tensor-inl.cuh:325</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a82a3484a6458e3e95bb91d320f2c6731"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a82a3484a6458e3e95bb91d320f2c6731">faiss::gpu::Tensor::transpose</a></div><div class="ttdeci">__host__ __device__ Tensor< T, Dim, InnerContig, IndexT, PtrTraits > transpose(int dim1, int dim2) const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00420">Tensor-inl.cuh:420</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a0b8bba630f7a1fa217f90b20d298420a"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a0b8bba630f7a1fa217f90b20d298420a">faiss::gpu::Tensor::getStride</a></div><div class="ttdeci">__host__ __device__ IndexT getStride(int i) const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00232">Tensor.cuh:232</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a503fe45536fb7153fbd18fe61c159304"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a503fe45536fb7153fbd18fe61c159304">faiss::gpu::Tensor::operator=</a></div><div class="ttdeci">__host__ __device__ Tensor< T, Dim, InnerContig, IndexT, PtrTraits > & operator=(Tensor< T, Dim, InnerContig, IndexT, PtrTraits > &t)=default</div><div class="ttdoc">Assignment. </div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a6c9640c365134ccc33cdb2695b016eb3"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a6c9640c365134ccc33cdb2695b016eb3">faiss::gpu::Tensor::castResize</a></div><div class="ttdeci">__host__ __device__ Tensor< U, Dim, InnerContig, IndexT, PtrTraits > castResize()</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00244">Tensor-inl.cuh:244</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a35a63cfa4034a8ee14a999132d8a1828"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a35a63cfa4034a8ee14a999132d8a1828">faiss::gpu::Tensor::view</a></div><div class="ttdeci">__host__ __device__ Tensor< T, SubDim, InnerContig, IndexT, PtrTraits > view()</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00618">Tensor-inl.cuh:618</a></div></div>
|
|
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a3067941f8f8f09fc73e2f06243699825"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a3067941f8f8f09fc73e2f06243699825">faiss::gpu::Tensor::isSame</a></div><div class="ttdeci">__host__ __device__ bool isSame(const Tensor< OtherT, OtherDim, InnerContig, IndexT, PtrTraits > &rhs) const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00180">Tensor-inl.cuh:180</a></div></div>
|
|
</div><!-- fragment --></div><!-- contents -->
|
|
<!-- start footer part -->
|
|
<hr class="footer"/><address class="footer"><small>
|
|
Generated by  <a href="http://www.doxygen.org/index.html">
|
|
<img class="footer" src="doxygen.png" alt="doxygen"/>
|
|
</a> 1.8.5
|
|
</small></address>
|
|
</body>
|
|
</html>
|