faiss/gpu/utils/Float16.cuh

155 lines
3.8 KiB
Plaintext

/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#pragma once
#include <cuda.h>
#include "../GpuResources.h"
#include "DeviceTensor.cuh"
// For float16, We use the half datatype, expecting it to be a struct
// as in CUDA 7.5.
#if CUDA_VERSION >= 7050
#define FAISS_USE_FLOAT16 1
// Some compute capabilities have full float16 ALUs.
#if __CUDA_ARCH__ >= 530
#define FAISS_USE_FULL_FLOAT16 1
#endif // __CUDA_ARCH__ types
#endif // CUDA_VERSION
#ifdef FAISS_USE_FLOAT16
#include <cuda_fp16.h>
#endif
namespace faiss { namespace gpu {
#ifdef FAISS_USE_FLOAT16
// 64 bytes containing 4 half (float16) values
struct Half4 {
half2 a;
half2 b;
};
inline __device__ float4 half4ToFloat4(Half4 v) {
float2 a = __half22float2(v.a);
float2 b = __half22float2(v.b);
float4 out;
out.x = a.x;
out.y = a.y;
out.z = b.x;
out.w = b.y;
return out;
}
inline __device__ Half4 float4ToHalf4(float4 v) {
float2 a;
a.x = v.x;
a.y = v.y;
float2 b;
b.x = v.z;
b.y = v.w;
Half4 out;
out.a = __float22half2_rn(a);
out.b = __float22half2_rn(b);
return out;
}
// 128 bytes containing 8 half (float16) values
struct Half8 {
Half4 a;
Half4 b;
};
/// Returns true if the given device supports native float16 math
bool getDeviceSupportsFloat16Math(int device);
/// Copies `in` to `out` while performing a float32 -> float16 conversion
void runConvertToFloat16(half* out,
const float* in,
size_t num,
cudaStream_t stream);
/// Copies `in` to `out` while performing a float16 -> float32
/// conversion
void runConvertToFloat32(float* out,
const half* in,
size_t num,
cudaStream_t stream);
template <int Dim>
void toHalf(cudaStream_t stream,
Tensor<float, Dim, true>& in,
Tensor<half, Dim, true>& out) {
FAISS_ASSERT(in.numElements() == out.numElements());
// The memory is contiguous (the `true`), so apply a pointwise
// kernel to convert
runConvertToFloat16(out.data(), in.data(), in.numElements(), stream);
}
template <int Dim>
DeviceTensor<half, Dim, true> toHalf(GpuResources* resources,
cudaStream_t stream,
Tensor<float, Dim, true>& in) {
DeviceTensor<half, Dim, true> out;
if (resources) {
out = std::move(DeviceTensor<half, Dim, true>(
resources->getMemoryManagerCurrentDevice(),
in.sizes(),
stream));
} else {
out = std::move(DeviceTensor<half, Dim, true>(in.sizes()));
}
toHalf<Dim>(stream, in, out);
return out;
}
template <int Dim>
void fromHalf(cudaStream_t stream,
Tensor<half, Dim, true>& in,
Tensor<float, Dim, true>& out) {
FAISS_ASSERT(in.numElements() == out.numElements());
// The memory is contiguous (the `true`), so apply a pointwise
// kernel to convert
runConvertToFloat32(out.data(), in.data(), in.numElements(), stream);
}
template <int Dim>
DeviceTensor<float, Dim, true> fromHalf(GpuResources* resources,
cudaStream_t stream,
Tensor<half, Dim, true>& in) {
DeviceTensor<float, Dim, true> out;
if (resources) {
out = std::move(DeviceTensor<float, Dim, true>(
resources->getMemoryManagerCurrentDevice(),
in.sizes(),
stream));
} else {
out = std::move(DeviceTensor<float, Dim, true>(in.sizes()));
}
fromHalf<Dim>(stream, in, out);
return out;
}
__half hostFloat2Half(float v);
#endif // FAISS_USE_FLOAT16
} } // namespace