faiss/docs/html/IVFPQ_8cu_source.html

843 lines
127 KiB
HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.5"/>
<title>Faiss: IVFPQ.cu Source File</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
$(document).ready(function() { searchBox.OnSelectItem(0); });
</script>
<link href="doxygen.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
<tbody>
<tr style="height: 56px;">
<td style="padding-left: 0.5em;">
<div id="projectname">Faiss
</div>
</td>
</tr>
</tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.5 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
<div id="navrow1" class="tabs">
<ul class="tablist">
<li><a href="index.html"><span>Main&#160;Page</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li class="current"><a href="files.html"><span>Files</span></a></li>
<li>
<div id="MSearchBox" class="MSearchBoxInactive">
<span class="left">
<img id="MSearchSelect" src="search/mag_sel.png"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
alt=""/>
<input type="text" id="MSearchField" value="Search" accesskey="S"
onfocus="searchBox.OnSearchFieldFocus(true)"
onblur="searchBox.OnSearchFieldFocus(false)"
onkeyup="searchBox.OnSearchFieldChange(event)"/>
</span><span class="right">
<a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
</span>
</div>
</li>
</ul>
</div>
<div id="navrow2" class="tabs2">
<ul class="tablist">
<li><a href="files.html"><span>File&#160;List</span></a></li>
</ul>
</div>
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
onkeydown="return searchBox.OnSearchSelectKey(event)">
<a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark">&#160;</span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark">&#160;</span>Classes</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark">&#160;</span>Namespaces</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(3)"><span class="SelectionMark">&#160;</span>Functions</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(4)"><span class="SelectionMark">&#160;</span>Variables</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(5)"><span class="SelectionMark">&#160;</span>Typedefs</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(6)"><span class="SelectionMark">&#160;</span>Enumerations</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(7)"><span class="SelectionMark">&#160;</span>Enumerator</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(8)"><span class="SelectionMark">&#160;</span>Friends</a></div>
<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0"
name="MSearchResults" id="MSearchResults">
</iframe>
</div>
<div id="nav-path" class="navpath">
<ul>
<li class="navelem"><a class="el" href="dir_6b3ae6988449b0834e9596fad5d75199.html">gpu</a></li><li class="navelem"><a class="el" href="dir_49d1182a3b8dfb62757c53ae905481ad.html">impl</a></li> </ul>
</div>
</div><!-- top -->
<div class="header">
<div class="headertitle">
<div class="title">IVFPQ.cu</div> </div>
</div><!--header-->
<div class="contents">
<div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno"> 1</span>&#160;<span class="comment"></span></div>
<div class="line"><a name="l00002"></a><span class="lineno"> 2</span>&#160;<span class="comment">/**</span></div>
<div class="line"><a name="l00003"></a><span class="lineno"> 3</span>&#160;<span class="comment"> * Copyright (c) 2015-present, Facebook, Inc.</span></div>
<div class="line"><a name="l00004"></a><span class="lineno"> 4</span>&#160;<span class="comment"> * All rights reserved.</span></div>
<div class="line"><a name="l00005"></a><span class="lineno"> 5</span>&#160;<span class="comment"> *</span></div>
<div class="line"><a name="l00006"></a><span class="lineno"> 6</span>&#160;<span class="comment"> * This source code is licensed under the CC-by-NC license found in the</span></div>
<div class="line"><a name="l00007"></a><span class="lineno"> 7</span>&#160;<span class="comment"> * LICENSE file in the root directory of this source tree.</span></div>
<div class="line"><a name="l00008"></a><span class="lineno"> 8</span>&#160;<span class="comment"> */</span></div>
<div class="line"><a name="l00009"></a><span class="lineno"> 9</span>&#160;</div>
<div class="line"><a name="l00010"></a><span class="lineno"> 10</span>&#160;<span class="comment">// Copyright 2004-present Facebook. All Rights Reserved.</span></div>
<div class="line"><a name="l00011"></a><span class="lineno"> 11</span>&#160;</div>
<div class="line"><a name="l00012"></a><span class="lineno"> 12</span>&#160;<span class="preprocessor">#include &quot;IVFPQ.cuh&quot;</span></div>
<div class="line"><a name="l00013"></a><span class="lineno"> 13</span>&#160;<span class="preprocessor">#include &quot;../GpuResources.h&quot;</span></div>
<div class="line"><a name="l00014"></a><span class="lineno"> 14</span>&#160;<span class="preprocessor">#include &quot;BroadcastSum.cuh&quot;</span></div>
<div class="line"><a name="l00015"></a><span class="lineno"> 15</span>&#160;<span class="preprocessor">#include &quot;Distance.cuh&quot;</span></div>
<div class="line"><a name="l00016"></a><span class="lineno"> 16</span>&#160;<span class="preprocessor">#include &quot;FlatIndex.cuh&quot;</span></div>
<div class="line"><a name="l00017"></a><span class="lineno"> 17</span>&#160;<span class="preprocessor">#include &quot;InvertedListAppend.cuh&quot;</span></div>
<div class="line"><a name="l00018"></a><span class="lineno"> 18</span>&#160;<span class="preprocessor">#include &quot;L2Norm.cuh&quot;</span></div>
<div class="line"><a name="l00019"></a><span class="lineno"> 19</span>&#160;<span class="preprocessor">#include &quot;PQCodeDistances.cuh&quot;</span></div>
<div class="line"><a name="l00020"></a><span class="lineno"> 20</span>&#160;<span class="preprocessor">#include &quot;PQScanMultiPassNoPrecomputed.cuh&quot;</span></div>
<div class="line"><a name="l00021"></a><span class="lineno"> 21</span>&#160;<span class="preprocessor">#include &quot;PQScanMultiPassPrecomputed.cuh&quot;</span></div>
<div class="line"><a name="l00022"></a><span class="lineno"> 22</span>&#160;<span class="preprocessor">#include &quot;RemapIndices.h&quot;</span></div>
<div class="line"><a name="l00023"></a><span class="lineno"> 23</span>&#160;<span class="preprocessor">#include &quot;VectorResidual.cuh&quot;</span></div>
<div class="line"><a name="l00024"></a><span class="lineno"> 24</span>&#160;<span class="preprocessor">#include &quot;../utils/DeviceDefs.cuh&quot;</span></div>
<div class="line"><a name="l00025"></a><span class="lineno"> 25</span>&#160;<span class="preprocessor">#include &quot;../utils/DeviceUtils.h&quot;</span></div>
<div class="line"><a name="l00026"></a><span class="lineno"> 26</span>&#160;<span class="preprocessor">#include &quot;../utils/HostTensor.cuh&quot;</span></div>
<div class="line"><a name="l00027"></a><span class="lineno"> 27</span>&#160;<span class="preprocessor">#include &quot;../utils/MatrixMult.cuh&quot;</span></div>
<div class="line"><a name="l00028"></a><span class="lineno"> 28</span>&#160;<span class="preprocessor">#include &quot;../utils/NoTypeTensor.cuh&quot;</span></div>
<div class="line"><a name="l00029"></a><span class="lineno"> 29</span>&#160;<span class="preprocessor">#include &quot;../utils/Transpose.cuh&quot;</span></div>
<div class="line"><a name="l00030"></a><span class="lineno"> 30</span>&#160;<span class="preprocessor">#include &lt;limits&gt;</span></div>
<div class="line"><a name="l00031"></a><span class="lineno"> 31</span>&#160;<span class="preprocessor">#include &lt;thrust/host_vector.h&gt;</span></div>
<div class="line"><a name="l00032"></a><span class="lineno"> 32</span>&#160;<span class="preprocessor">#include &lt;unordered_map&gt;</span></div>
<div class="line"><a name="l00033"></a><span class="lineno"> 33</span>&#160;</div>
<div class="line"><a name="l00034"></a><span class="lineno"> 34</span>&#160;<span class="keyword">namespace </span>faiss { <span class="keyword">namespace </span>gpu {</div>
<div class="line"><a name="l00035"></a><span class="lineno"> 35</span>&#160;</div>
<div class="line"><a name="l00036"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1IVFPQ.html#acdcc64f9b72e661d39528d5d67e54536"> 36</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1IVFPQ.html#acdcc64f9b72e661d39528d5d67e54536">IVFPQ::IVFPQ</a>(<a class="code" href="classfaiss_1_1gpu_1_1GpuResources.html">GpuResources</a>* resources,</div>
<div class="line"><a name="l00037"></a><span class="lineno"> 37</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1FlatIndex.html">FlatIndex</a>* quantizer,</div>
<div class="line"><a name="l00038"></a><span class="lineno"> 38</span>&#160; <span class="keywordtype">int</span> numSubQuantizers,</div>
<div class="line"><a name="l00039"></a><span class="lineno"> 39</span>&#160; <span class="keywordtype">int</span> bitsPerSubQuantizer,</div>
<div class="line"><a name="l00040"></a><span class="lineno"> 40</span>&#160; <span class="keywordtype">float</span>* pqCentroidData,</div>
<div class="line"><a name="l00041"></a><span class="lineno"> 41</span>&#160; IndicesOptions indicesOptions,</div>
<div class="line"><a name="l00042"></a><span class="lineno"> 42</span>&#160; <span class="keywordtype">bool</span> useFloat16LookupTables) :</div>
<div class="line"><a name="l00043"></a><span class="lineno"> 43</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html">IVFBase</a>(resources,</div>
<div class="line"><a name="l00044"></a><span class="lineno"> 44</span>&#160; quantizer,</div>
<div class="line"><a name="l00045"></a><span class="lineno"> 45</span>&#160; numSubQuantizers,</div>
<div class="line"><a name="l00046"></a><span class="lineno"> 46</span>&#160; indicesOptions),</div>
<div class="line"><a name="l00047"></a><span class="lineno"> 47</span>&#160; numSubQuantizers_(numSubQuantizers),</div>
<div class="line"><a name="l00048"></a><span class="lineno"> 48</span>&#160; bitsPerSubQuantizer_(bitsPerSubQuantizer),</div>
<div class="line"><a name="l00049"></a><span class="lineno"> 49</span>&#160; numSubQuantizerCodes_(utils::pow2(bitsPerSubQuantizer_)),</div>
<div class="line"><a name="l00050"></a><span class="lineno"> 50</span>&#160; dimPerSubQuantizer_(dim_ / numSubQuantizers),</div>
<div class="line"><a name="l00051"></a><span class="lineno"> 51</span>&#160; precomputedCodes_(false),</div>
<div class="line"><a name="l00052"></a><span class="lineno"> 52</span>&#160; useFloat16LookupTables_(useFloat16LookupTables) {</div>
<div class="line"><a name="l00053"></a><span class="lineno"> 53</span>&#160; FAISS_ASSERT(pqCentroidData);</div>
<div class="line"><a name="l00054"></a><span class="lineno"> 54</span>&#160;</div>
<div class="line"><a name="l00055"></a><span class="lineno"> 55</span>&#160; FAISS_ASSERT(bitsPerSubQuantizer_ &lt;= 8);</div>
<div class="line"><a name="l00056"></a><span class="lineno"> 56</span>&#160; FAISS_ASSERT(<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#aba3e3cfa469e5187f2d553fff10e0250">dim_</a> % numSubQuantizers_ == 0);</div>
<div class="line"><a name="l00057"></a><span class="lineno"> 57</span>&#160; FAISS_ASSERT(<a class="code" href="classfaiss_1_1gpu_1_1IVFPQ.html#adb58eeacdceb0e0fde1820ca7f116e05">isSupportedPQCodeLength</a>(<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a319568b832518392fed33ea4f8bfc613">bytesPerVector_</a>));</div>
<div class="line"><a name="l00058"></a><span class="lineno"> 58</span>&#160;</div>
<div class="line"><a name="l00059"></a><span class="lineno"> 59</span>&#160;<span class="preprocessor">#ifndef FAISS_USE_FLOAT16</span></div>
<div class="line"><a name="l00060"></a><span class="lineno"> 60</span>&#160;<span class="preprocessor"></span> FAISS_ASSERT(!useFloat16LookupTables_);</div>
<div class="line"><a name="l00061"></a><span class="lineno"> 61</span>&#160;<span class="preprocessor">#endif</span></div>
<div class="line"><a name="l00062"></a><span class="lineno"> 62</span>&#160;<span class="preprocessor"></span></div>
<div class="line"><a name="l00063"></a><span class="lineno"> 63</span>&#160; setPQCentroids_(pqCentroidData);</div>
<div class="line"><a name="l00064"></a><span class="lineno"> 64</span>&#160;}</div>
<div class="line"><a name="l00065"></a><span class="lineno"> 65</span>&#160;</div>
<div class="line"><a name="l00066"></a><span class="lineno"> 66</span>&#160;IVFPQ::~IVFPQ() {</div>
<div class="line"><a name="l00067"></a><span class="lineno"> 67</span>&#160;}</div>
<div class="line"><a name="l00068"></a><span class="lineno"> 68</span>&#160;</div>
<div class="line"><a name="l00069"></a><span class="lineno"> 69</span>&#160;</div>
<div class="line"><a name="l00070"></a><span class="lineno"> 70</span>&#160;<span class="keywordtype">bool</span></div>
<div class="line"><a name="l00071"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1IVFPQ.html#adb58eeacdceb0e0fde1820ca7f116e05"> 71</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1IVFPQ.html#adb58eeacdceb0e0fde1820ca7f116e05">IVFPQ::isSupportedPQCodeLength</a>(<span class="keywordtype">int</span> size) {</div>
<div class="line"><a name="l00072"></a><span class="lineno"> 72</span>&#160; <span class="keywordflow">switch</span> (size) {</div>
<div class="line"><a name="l00073"></a><span class="lineno"> 73</span>&#160; <span class="keywordflow">case</span> 1:</div>
<div class="line"><a name="l00074"></a><span class="lineno"> 74</span>&#160; <span class="keywordflow">case</span> 2:</div>
<div class="line"><a name="l00075"></a><span class="lineno"> 75</span>&#160; <span class="keywordflow">case</span> 3:</div>
<div class="line"><a name="l00076"></a><span class="lineno"> 76</span>&#160; <span class="keywordflow">case</span> 4:</div>
<div class="line"><a name="l00077"></a><span class="lineno"> 77</span>&#160; <span class="keywordflow">case</span> 8:</div>
<div class="line"><a name="l00078"></a><span class="lineno"> 78</span>&#160; <span class="keywordflow">case</span> 12:</div>
<div class="line"><a name="l00079"></a><span class="lineno"> 79</span>&#160; <span class="keywordflow">case</span> 16:</div>
<div class="line"><a name="l00080"></a><span class="lineno"> 80</span>&#160; <span class="keywordflow">case</span> 20:</div>
<div class="line"><a name="l00081"></a><span class="lineno"> 81</span>&#160; <span class="keywordflow">case</span> 24:</div>
<div class="line"><a name="l00082"></a><span class="lineno"> 82</span>&#160; <span class="keywordflow">case</span> 28:</div>
<div class="line"><a name="l00083"></a><span class="lineno"> 83</span>&#160; <span class="keywordflow">case</span> 32:</div>
<div class="line"><a name="l00084"></a><span class="lineno"> 84</span>&#160; <span class="keywordflow">case</span> 40:</div>
<div class="line"><a name="l00085"></a><span class="lineno"> 85</span>&#160; <span class="keywordflow">case</span> 48:</div>
<div class="line"><a name="l00086"></a><span class="lineno"> 86</span>&#160; <span class="keywordflow">case</span> 56: <span class="comment">// only supported with float16</span></div>
<div class="line"><a name="l00087"></a><span class="lineno"> 87</span>&#160; <span class="keywordflow">case</span> 64: <span class="comment">// only supported with float16</span></div>
<div class="line"><a name="l00088"></a><span class="lineno"> 88</span>&#160; <span class="keywordflow">case</span> 96: <span class="comment">// only supported with float16</span></div>
<div class="line"><a name="l00089"></a><span class="lineno"> 89</span>&#160; <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
<div class="line"><a name="l00090"></a><span class="lineno"> 90</span>&#160; <span class="keywordflow">default</span>:</div>
<div class="line"><a name="l00091"></a><span class="lineno"> 91</span>&#160; <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00092"></a><span class="lineno"> 92</span>&#160; }</div>
<div class="line"><a name="l00093"></a><span class="lineno"> 93</span>&#160;}</div>
<div class="line"><a name="l00094"></a><span class="lineno"> 94</span>&#160;</div>
<div class="line"><a name="l00095"></a><span class="lineno"> 95</span>&#160;<span class="keywordtype">bool</span></div>
<div class="line"><a name="l00096"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1IVFPQ.html#a0eedf0295ad73125ee1254173a176674"> 96</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1IVFPQ.html#a0eedf0295ad73125ee1254173a176674">IVFPQ::isSupportedNoPrecomputedSubDimSize</a>(<span class="keywordtype">int</span> dims) {</div>
<div class="line"><a name="l00097"></a><span class="lineno"> 97</span>&#160; <span class="keywordflow">return</span> faiss::gpu::isSupportedNoPrecomputedSubDimSize(dims);</div>
<div class="line"><a name="l00098"></a><span class="lineno"> 98</span>&#160;}</div>
<div class="line"><a name="l00099"></a><span class="lineno"> 99</span>&#160;</div>
<div class="line"><a name="l00100"></a><span class="lineno"> 100</span>&#160;<span class="keywordtype">void</span></div>
<div class="line"><a name="l00101"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1IVFPQ.html#adcee5dbf48c3cb6b8a67f5f392e155fd"> 101</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1IVFPQ.html#adcee5dbf48c3cb6b8a67f5f392e155fd">IVFPQ::setPrecomputedCodes</a>(<span class="keywordtype">bool</span> enable) {</div>
<div class="line"><a name="l00102"></a><span class="lineno"> 102</span>&#160; <span class="keywordflow">if</span> (precomputedCodes_ != enable) {</div>
<div class="line"><a name="l00103"></a><span class="lineno"> 103</span>&#160; precomputedCodes_ = enable;</div>
<div class="line"><a name="l00104"></a><span class="lineno"> 104</span>&#160;</div>
<div class="line"><a name="l00105"></a><span class="lineno"> 105</span>&#160; <span class="keywordflow">if</span> (precomputedCodes_) {</div>
<div class="line"><a name="l00106"></a><span class="lineno"> 106</span>&#160; precomputeCodes_();</div>
<div class="line"><a name="l00107"></a><span class="lineno"> 107</span>&#160; } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00108"></a><span class="lineno"> 108</span>&#160; <span class="comment">// Clear out old precomputed code data</span></div>
<div class="line"><a name="l00109"></a><span class="lineno"> 109</span>&#160; precomputedCode_ = std::move(<a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;float, 3, true&gt;</a>());</div>
<div class="line"><a name="l00110"></a><span class="lineno"> 110</span>&#160;</div>
<div class="line"><a name="l00111"></a><span class="lineno"> 111</span>&#160;<span class="preprocessor">#ifdef FAISS_USE_FLOAT16</span></div>
<div class="line"><a name="l00112"></a><span class="lineno"> 112</span>&#160;<span class="preprocessor"></span> precomputedCodeHalf_ = std::move(<a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;half, 3, true&gt;</a>());</div>
<div class="line"><a name="l00113"></a><span class="lineno"> 113</span>&#160;<span class="preprocessor">#endif</span></div>
<div class="line"><a name="l00114"></a><span class="lineno"> 114</span>&#160;<span class="preprocessor"></span> }</div>
<div class="line"><a name="l00115"></a><span class="lineno"> 115</span>&#160; }</div>
<div class="line"><a name="l00116"></a><span class="lineno"> 116</span>&#160;}</div>
<div class="line"><a name="l00117"></a><span class="lineno"> 117</span>&#160;</div>
<div class="line"><a name="l00118"></a><span class="lineno"> 118</span>&#160;<span class="keywordtype">int</span></div>
<div class="line"><a name="l00119"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1IVFPQ.html#ab1e07b04b25569cc58c5f3f033f4dab3"> 119</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1IVFPQ.html#ab1e07b04b25569cc58c5f3f033f4dab3">IVFPQ::classifyAndAddVectors</a>(<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;float, 2, true&gt;</a>&amp; vecs,</div>
<div class="line"><a name="l00120"></a><span class="lineno"> 120</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;long, 1, true&gt;</a>&amp; indices) {</div>
<div class="line"><a name="l00121"></a><span class="lineno"> 121</span>&#160; FAISS_ASSERT(vecs.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">getSize</a>(0) == indices.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">getSize</a>(0));</div>
<div class="line"><a name="l00122"></a><span class="lineno"> 122</span>&#160; FAISS_ASSERT(vecs.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">getSize</a>(1) == <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#aba3e3cfa469e5187f2d553fff10e0250">dim_</a>);</div>
<div class="line"><a name="l00123"></a><span class="lineno"> 123</span>&#160;</div>
<div class="line"><a name="l00124"></a><span class="lineno"> 124</span>&#160; FAISS_ASSERT(!<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a878114abdba07c9cf7735f9c0ed594c3">quantizer_</a>-&gt;getUseFloat16());</div>
<div class="line"><a name="l00125"></a><span class="lineno"> 125</span>&#160; <span class="keyword">auto</span>&amp; coarseCentroids = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a878114abdba07c9cf7735f9c0ed594c3">quantizer_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1FlatIndex.html#a12058744ffb3fbcbb047872449269c06">getVectorsFloat32Ref</a>();</div>
<div class="line"><a name="l00126"></a><span class="lineno"> 126</span>&#160; <span class="keyword">auto</span>&amp; mem = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;getMemoryManagerCurrentDevice();</div>
<div class="line"><a name="l00127"></a><span class="lineno"> 127</span>&#160; <span class="keyword">auto</span> stream = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;getDefaultStreamCurrentDevice();</div>
<div class="line"><a name="l00128"></a><span class="lineno"> 128</span>&#160;</div>
<div class="line"><a name="l00129"></a><span class="lineno"> 129</span>&#160; <span class="comment">// Number of valid vectors that we actually add; we return this</span></div>
<div class="line"><a name="l00130"></a><span class="lineno"> 130</span>&#160; <span class="keywordtype">int</span> numAdded = 0;</div>
<div class="line"><a name="l00131"></a><span class="lineno"> 131</span>&#160;</div>
<div class="line"><a name="l00132"></a><span class="lineno"> 132</span>&#160; <span class="comment">// We don&#39;t actually need this</span></div>
<div class="line"><a name="l00133"></a><span class="lineno"> 133</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;float, 2, true&gt;</a> listDistance(mem, {vecs.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">getSize</a>(0), 1}, stream);</div>
<div class="line"><a name="l00134"></a><span class="lineno"> 134</span>&#160; <span class="comment">// We use this</span></div>
<div class="line"><a name="l00135"></a><span class="lineno"> 135</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;int, 2, true&gt;</a> listIds2d(mem, {vecs.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">getSize</a>(0), 1}, stream);</div>
<div class="line"><a name="l00136"></a><span class="lineno"> 136</span>&#160; <span class="keyword">auto</span> listIds = listIds2d.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a3095eaec5711fe697c16c21598a8ddc1">view</a>&lt;1&gt;({vecs.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">getSize</a>(0)});</div>
<div class="line"><a name="l00137"></a><span class="lineno"> 137</span>&#160;</div>
<div class="line"><a name="l00138"></a><span class="lineno"> 138</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a878114abdba07c9cf7735f9c0ed594c3">quantizer_</a>-&gt;query(vecs, 1, listDistance, listIds2d, <span class="keyword">false</span>);</div>
<div class="line"><a name="l00139"></a><span class="lineno"> 139</span>&#160;</div>
<div class="line"><a name="l00140"></a><span class="lineno"> 140</span>&#160; <span class="comment">// Copy the lists that we wish to append to back to the CPU</span></div>
<div class="line"><a name="l00141"></a><span class="lineno"> 141</span>&#160; <span class="comment">// FIXME: really this can be into pinned memory and a true async</span></div>
<div class="line"><a name="l00142"></a><span class="lineno"> 142</span>&#160; <span class="comment">// copy on a different stream; we can start the copy early, but it&#39;s</span></div>
<div class="line"><a name="l00143"></a><span class="lineno"> 143</span>&#160; <span class="comment">// tiny</span></div>
<div class="line"><a name="l00144"></a><span class="lineno"> 144</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1HostTensor.html">HostTensor&lt;int, 1, true&gt;</a> listIdsHost(listIds, stream);</div>
<div class="line"><a name="l00145"></a><span class="lineno"> 145</span>&#160;</div>
<div class="line"><a name="l00146"></a><span class="lineno"> 146</span>&#160; <span class="comment">// Calculate the residual for each closest centroid</span></div>
<div class="line"><a name="l00147"></a><span class="lineno"> 147</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;float, 2, true&gt;</a> residuals(</div>
<div class="line"><a name="l00148"></a><span class="lineno"> 148</span>&#160; mem, {vecs.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">getSize</a>(0), vecs.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">getSize</a>(1)}, stream);</div>
<div class="line"><a name="l00149"></a><span class="lineno"> 149</span>&#160;</div>
<div class="line"><a name="l00150"></a><span class="lineno"> 150</span>&#160; runCalcResidual(vecs, coarseCentroids, listIds, residuals, stream);</div>
<div class="line"><a name="l00151"></a><span class="lineno"> 151</span>&#160;</div>
<div class="line"><a name="l00152"></a><span class="lineno"> 152</span>&#160; <span class="comment">// Residuals are in the form</span></div>
<div class="line"><a name="l00153"></a><span class="lineno"> 153</span>&#160; <span class="comment">// (vec x numSubQuantizer x dimPerSubQuantizer)</span></div>
<div class="line"><a name="l00154"></a><span class="lineno"> 154</span>&#160; <span class="comment">// transpose to</span></div>
<div class="line"><a name="l00155"></a><span class="lineno"> 155</span>&#160; <span class="comment">// (numSubQuantizer x vec x dimPerSubQuantizer)</span></div>
<div class="line"><a name="l00156"></a><span class="lineno"> 156</span>&#160; <span class="keyword">auto</span> residualsView = residuals.view&lt;3&gt;(</div>
<div class="line"><a name="l00157"></a><span class="lineno"> 157</span>&#160; {residuals.getSize(0), numSubQuantizers_, dimPerSubQuantizer_});</div>
<div class="line"><a name="l00158"></a><span class="lineno"> 158</span>&#160;</div>
<div class="line"><a name="l00159"></a><span class="lineno"> 159</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;float, 3, true&gt;</a> residualsTranspose(</div>
<div class="line"><a name="l00160"></a><span class="lineno"> 160</span>&#160; mem,</div>
<div class="line"><a name="l00161"></a><span class="lineno"> 161</span>&#160; {numSubQuantizers_, residuals.getSize(0), dimPerSubQuantizer_},</div>
<div class="line"><a name="l00162"></a><span class="lineno"> 162</span>&#160; stream);</div>
<div class="line"><a name="l00163"></a><span class="lineno"> 163</span>&#160;</div>
<div class="line"><a name="l00164"></a><span class="lineno"> 164</span>&#160; runTransposeAny(residualsView, 0, 1, residualsTranspose, stream);</div>
<div class="line"><a name="l00165"></a><span class="lineno"> 165</span>&#160;</div>
<div class="line"><a name="l00166"></a><span class="lineno"> 166</span>&#160; <span class="comment">// Get the product quantizer centroids in the form</span></div>
<div class="line"><a name="l00167"></a><span class="lineno"> 167</span>&#160; <span class="comment">// (numSubQuantizer x numSubQuantizerCodes x dimPerSubQuantizer)</span></div>
<div class="line"><a name="l00168"></a><span class="lineno"> 168</span>&#160; <span class="comment">// which is pqCentroidsMiddleCode_</span></div>
<div class="line"><a name="l00169"></a><span class="lineno"> 169</span>&#160;</div>
<div class="line"><a name="l00170"></a><span class="lineno"> 170</span>&#160; <span class="comment">// We now have a batch operation to find the top-1 distances:</span></div>
<div class="line"><a name="l00171"></a><span class="lineno"> 171</span>&#160; <span class="comment">// batch size: numSubQuantizer</span></div>
<div class="line"><a name="l00172"></a><span class="lineno"> 172</span>&#160; <span class="comment">// centroids: (numSubQuantizerCodes x dimPerSubQuantizer)</span></div>
<div class="line"><a name="l00173"></a><span class="lineno"> 173</span>&#160; <span class="comment">// residuals: (vec x dimPerSubQuantizer)</span></div>
<div class="line"><a name="l00174"></a><span class="lineno"> 174</span>&#160; <span class="comment">// =&gt; (numSubQuantizer x vec x 1)</span></div>
<div class="line"><a name="l00175"></a><span class="lineno"> 175</span>&#160;</div>
<div class="line"><a name="l00176"></a><span class="lineno"> 176</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;float, 3, true&gt;</a> closestSubQDistance(</div>
<div class="line"><a name="l00177"></a><span class="lineno"> 177</span>&#160; mem, {numSubQuantizers_, residuals.getSize(0), 1}, stream);</div>
<div class="line"><a name="l00178"></a><span class="lineno"> 178</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;int, 3, true&gt;</a> closestSubQIndex(</div>
<div class="line"><a name="l00179"></a><span class="lineno"> 179</span>&#160; mem, {numSubQuantizers_, residuals.getSize(0), 1}, stream);</div>
<div class="line"><a name="l00180"></a><span class="lineno"> 180</span>&#160;</div>
<div class="line"><a name="l00181"></a><span class="lineno"> 181</span>&#160; <span class="keywordflow">for</span> (<span class="keywordtype">int</span> subQ = 0; subQ &lt; numSubQuantizers_; ++subQ) {</div>
<div class="line"><a name="l00182"></a><span class="lineno"> 182</span>&#160; <span class="keyword">auto</span> closestSubQDistanceView = closestSubQDistance[subQ].<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a3095eaec5711fe697c16c21598a8ddc1">view</a>();</div>
<div class="line"><a name="l00183"></a><span class="lineno"> 183</span>&#160; <span class="keyword">auto</span> closestSubQIndexView = closestSubQIndex[subQ].view();</div>
<div class="line"><a name="l00184"></a><span class="lineno"> 184</span>&#160;</div>
<div class="line"><a name="l00185"></a><span class="lineno"> 185</span>&#160; <span class="keyword">auto</span> pqCentroidsMiddleCodeView = pqCentroidsMiddleCode_[subQ].<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a3095eaec5711fe697c16c21598a8ddc1">view</a>();</div>
<div class="line"><a name="l00186"></a><span class="lineno"> 186</span>&#160; <span class="keyword">auto</span> residualsTransposeView = residualsTranspose[subQ].view();</div>
<div class="line"><a name="l00187"></a><span class="lineno"> 187</span>&#160;</div>
<div class="line"><a name="l00188"></a><span class="lineno"> 188</span>&#160; runL2Distance(<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>,</div>
<div class="line"><a name="l00189"></a><span class="lineno"> 189</span>&#160; pqCentroidsMiddleCodeView,</div>
<div class="line"><a name="l00190"></a><span class="lineno"> 190</span>&#160; <span class="keyword">nullptr</span>, <span class="comment">// no precomputed norms</span></div>
<div class="line"><a name="l00191"></a><span class="lineno"> 191</span>&#160; residualsTransposeView,</div>
<div class="line"><a name="l00192"></a><span class="lineno"> 192</span>&#160; 1,</div>
<div class="line"><a name="l00193"></a><span class="lineno"> 193</span>&#160; closestSubQDistanceView,</div>
<div class="line"><a name="l00194"></a><span class="lineno"> 194</span>&#160; closestSubQIndexView,</div>
<div class="line"><a name="l00195"></a><span class="lineno"> 195</span>&#160; <span class="comment">// We don&#39;t care about distances</span></div>
<div class="line"><a name="l00196"></a><span class="lineno"> 196</span>&#160; <span class="keyword">true</span>,</div>
<div class="line"><a name="l00197"></a><span class="lineno"> 197</span>&#160; <span class="comment">// Much larger tile size, since these vectors are a</span></div>
<div class="line"><a name="l00198"></a><span class="lineno"> 198</span>&#160; <span class="comment">// lot smaller than query vectors</span></div>
<div class="line"><a name="l00199"></a><span class="lineno"> 199</span>&#160; 1024);</div>
<div class="line"><a name="l00200"></a><span class="lineno"> 200</span>&#160; }</div>
<div class="line"><a name="l00201"></a><span class="lineno"> 201</span>&#160;</div>
<div class="line"><a name="l00202"></a><span class="lineno"> 202</span>&#160; <span class="comment">// Now, we have the nearest sub-q centroid for each slice of the</span></div>
<div class="line"><a name="l00203"></a><span class="lineno"> 203</span>&#160; <span class="comment">// residual vector.</span></div>
<div class="line"><a name="l00204"></a><span class="lineno"> 204</span>&#160; <span class="keyword">auto</span> closestSubQIndexView = closestSubQIndex.view&lt;2&gt;(</div>
<div class="line"><a name="l00205"></a><span class="lineno"> 205</span>&#160; {numSubQuantizers_, residuals.getSize(0)});</div>
<div class="line"><a name="l00206"></a><span class="lineno"> 206</span>&#160;</div>
<div class="line"><a name="l00207"></a><span class="lineno"> 207</span>&#160; <span class="comment">// Transpose this for easy use</span></div>
<div class="line"><a name="l00208"></a><span class="lineno"> 208</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;int, 2, true&gt;</a> encodings(</div>
<div class="line"><a name="l00209"></a><span class="lineno"> 209</span>&#160; mem, {residuals.getSize(0), numSubQuantizers_}, stream);</div>
<div class="line"><a name="l00210"></a><span class="lineno"> 210</span>&#160;</div>
<div class="line"><a name="l00211"></a><span class="lineno"> 211</span>&#160; runTransposeAny(closestSubQIndexView, 0, 1, encodings, stream);</div>
<div class="line"><a name="l00212"></a><span class="lineno"> 212</span>&#160;</div>
<div class="line"><a name="l00213"></a><span class="lineno"> 213</span>&#160; <span class="comment">// Now we add the encoded vectors to the individual lists</span></div>
<div class="line"><a name="l00214"></a><span class="lineno"> 214</span>&#160; <span class="comment">// First, make sure that there is space available for adding the new</span></div>
<div class="line"><a name="l00215"></a><span class="lineno"> 215</span>&#160; <span class="comment">// encoded vectors and indices</span></div>
<div class="line"><a name="l00216"></a><span class="lineno"> 216</span>&#160;</div>
<div class="line"><a name="l00217"></a><span class="lineno"> 217</span>&#160; <span class="comment">// list id -&gt; # being added</span></div>
<div class="line"><a name="l00218"></a><span class="lineno"> 218</span>&#160; std::unordered_map&lt;int, int&gt; assignCounts;</div>
<div class="line"><a name="l00219"></a><span class="lineno"> 219</span>&#160;</div>
<div class="line"><a name="l00220"></a><span class="lineno"> 220</span>&#160; <span class="comment">// vector id -&gt; offset in list</span></div>
<div class="line"><a name="l00221"></a><span class="lineno"> 221</span>&#160; <span class="comment">// (we already have vector id -&gt; list id in listIds)</span></div>
<div class="line"><a name="l00222"></a><span class="lineno"> 222</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1HostTensor.html">HostTensor&lt;int, 1, true&gt;</a> listOffsetHost({listIdsHost.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">getSize</a>(0)});</div>
<div class="line"><a name="l00223"></a><span class="lineno"> 223</span>&#160;</div>
<div class="line"><a name="l00224"></a><span class="lineno"> 224</span>&#160; <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; listIdsHost.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">getSize</a>(0); ++i) {</div>
<div class="line"><a name="l00225"></a><span class="lineno"> 225</span>&#160; <span class="keywordtype">int</span> listId = listIdsHost[i];</div>
<div class="line"><a name="l00226"></a><span class="lineno"> 226</span>&#160;</div>
<div class="line"><a name="l00227"></a><span class="lineno"> 227</span>&#160; <span class="comment">// Add vector could be invalid (contains NaNs etc)</span></div>
<div class="line"><a name="l00228"></a><span class="lineno"> 228</span>&#160; <span class="keywordflow">if</span> (listId &lt; 0) {</div>
<div class="line"><a name="l00229"></a><span class="lineno"> 229</span>&#160; listOffsetHost[i] = -1;</div>
<div class="line"><a name="l00230"></a><span class="lineno"> 230</span>&#160; <span class="keywordflow">continue</span>;</div>
<div class="line"><a name="l00231"></a><span class="lineno"> 231</span>&#160; }</div>
<div class="line"><a name="l00232"></a><span class="lineno"> 232</span>&#160;</div>
<div class="line"><a name="l00233"></a><span class="lineno"> 233</span>&#160; FAISS_ASSERT(listId &lt; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#accc4d96c14643e5f471220cb1e92ac70">numLists_</a>);</div>
<div class="line"><a name="l00234"></a><span class="lineno"> 234</span>&#160; ++numAdded;</div>
<div class="line"><a name="l00235"></a><span class="lineno"> 235</span>&#160;</div>
<div class="line"><a name="l00236"></a><span class="lineno"> 236</span>&#160; <span class="keywordtype">int</span> offset = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a2facc7285107de1f24d3471cbcf15f26">deviceListData_</a>[listId]-&gt;size() / <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a319568b832518392fed33ea4f8bfc613">bytesPerVector_</a>;</div>
<div class="line"><a name="l00237"></a><span class="lineno"> 237</span>&#160;</div>
<div class="line"><a name="l00238"></a><span class="lineno"> 238</span>&#160; <span class="keyword">auto</span> it = assignCounts.find(listId);</div>
<div class="line"><a name="l00239"></a><span class="lineno"> 239</span>&#160; <span class="keywordflow">if</span> (it != assignCounts.end()) {</div>
<div class="line"><a name="l00240"></a><span class="lineno"> 240</span>&#160; offset += it-&gt;second;</div>
<div class="line"><a name="l00241"></a><span class="lineno"> 241</span>&#160; it-&gt;second++;</div>
<div class="line"><a name="l00242"></a><span class="lineno"> 242</span>&#160; } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00243"></a><span class="lineno"> 243</span>&#160; assignCounts[listId] = 1;</div>
<div class="line"><a name="l00244"></a><span class="lineno"> 244</span>&#160; }</div>
<div class="line"><a name="l00245"></a><span class="lineno"> 245</span>&#160;</div>
<div class="line"><a name="l00246"></a><span class="lineno"> 246</span>&#160; listOffsetHost[i] = offset;</div>
<div class="line"><a name="l00247"></a><span class="lineno"> 247</span>&#160; }</div>
<div class="line"><a name="l00248"></a><span class="lineno"> 248</span>&#160;</div>
<div class="line"><a name="l00249"></a><span class="lineno"> 249</span>&#160; <span class="comment">// If we didn&#39;t add anything (all invalid vectors), no need to</span></div>
<div class="line"><a name="l00250"></a><span class="lineno"> 250</span>&#160; <span class="comment">// continue</span></div>
<div class="line"><a name="l00251"></a><span class="lineno"> 251</span>&#160; <span class="keywordflow">if</span> (numAdded == 0) {</div>
<div class="line"><a name="l00252"></a><span class="lineno"> 252</span>&#160; <span class="keywordflow">return</span> 0;</div>
<div class="line"><a name="l00253"></a><span class="lineno"> 253</span>&#160; }</div>
<div class="line"><a name="l00254"></a><span class="lineno"> 254</span>&#160;</div>
<div class="line"><a name="l00255"></a><span class="lineno"> 255</span>&#160; <span class="comment">// We need to resize the data structures for the inverted lists on</span></div>
<div class="line"><a name="l00256"></a><span class="lineno"> 256</span>&#160; <span class="comment">// the GPUs, which means that they might need reallocation, which</span></div>
<div class="line"><a name="l00257"></a><span class="lineno"> 257</span>&#160; <span class="comment">// means that their base address may change. Figure out the new base</span></div>
<div class="line"><a name="l00258"></a><span class="lineno"> 258</span>&#160; <span class="comment">// addresses, and update those in a batch on the device</span></div>
<div class="line"><a name="l00259"></a><span class="lineno"> 259</span>&#160; {</div>
<div class="line"><a name="l00260"></a><span class="lineno"> 260</span>&#160; <span class="comment">// Resize all of the lists that we are appending to</span></div>
<div class="line"><a name="l00261"></a><span class="lineno"> 261</span>&#160; <span class="keywordflow">for</span> (<span class="keyword">auto</span>&amp; counts : assignCounts) {</div>
<div class="line"><a name="l00262"></a><span class="lineno"> 262</span>&#160; <span class="keyword">auto</span>&amp; codes = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a2facc7285107de1f24d3471cbcf15f26">deviceListData_</a>[counts.first];</div>
<div class="line"><a name="l00263"></a><span class="lineno"> 263</span>&#160; codes-&gt;resize(codes-&gt;size() + counts.second * <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a319568b832518392fed33ea4f8bfc613">bytesPerVector_</a>,</div>
<div class="line"><a name="l00264"></a><span class="lineno"> 264</span>&#160; stream);</div>
<div class="line"><a name="l00265"></a><span class="lineno"> 265</span>&#160; <span class="keywordtype">int</span> newNumVecs = (int) (codes-&gt;size() / <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a319568b832518392fed33ea4f8bfc613">bytesPerVector_</a>);</div>
<div class="line"><a name="l00266"></a><span class="lineno"> 266</span>&#160;</div>
<div class="line"><a name="l00267"></a><span class="lineno"> 267</span>&#160; <span class="keyword">auto</span>&amp; indices = deviceListIndices_[counts.first];</div>
<div class="line"><a name="l00268"></a><span class="lineno"> 268</span>&#160; <span class="keywordflow">if</span> ((<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#afb6d10e23d6448c10f472b9234e0bcab">indicesOptions_</a> == INDICES_32_BIT) ||</div>
<div class="line"><a name="l00269"></a><span class="lineno"> 269</span>&#160; (<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#afb6d10e23d6448c10f472b9234e0bcab">indicesOptions_</a> == INDICES_64_BIT)) {</div>
<div class="line"><a name="l00270"></a><span class="lineno"> 270</span>&#160; <span class="keywordtype">size_t</span> indexSize =</div>
<div class="line"><a name="l00271"></a><span class="lineno"> 271</span>&#160; (<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#afb6d10e23d6448c10f472b9234e0bcab">indicesOptions_</a> == INDICES_32_BIT) ? <span class="keyword">sizeof</span>(<span class="keywordtype">int</span>) : <span class="keyword">sizeof</span>(long);</div>
<div class="line"><a name="l00272"></a><span class="lineno"> 272</span>&#160;</div>
<div class="line"><a name="l00273"></a><span class="lineno"> 273</span>&#160; indices-&gt;resize(indices-&gt;size() + counts.second * indexSize, stream);</div>
<div class="line"><a name="l00274"></a><span class="lineno"> 274</span>&#160; } <span class="keywordflow">else</span> <span class="keywordflow">if</span> (<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#afb6d10e23d6448c10f472b9234e0bcab">indicesOptions_</a> == INDICES_CPU) {</div>
<div class="line"><a name="l00275"></a><span class="lineno"> 275</span>&#160; <span class="comment">// indices are stored on the CPU side</span></div>
<div class="line"><a name="l00276"></a><span class="lineno"> 276</span>&#160; FAISS_ASSERT(counts.first &lt; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a53f3c382a79b7f89630a85dfbc3a1fed">listOffsetToUserIndex_</a>.size());</div>
<div class="line"><a name="l00277"></a><span class="lineno"> 277</span>&#160;</div>
<div class="line"><a name="l00278"></a><span class="lineno"> 278</span>&#160; <span class="keyword">auto</span>&amp; userIndices = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a53f3c382a79b7f89630a85dfbc3a1fed">listOffsetToUserIndex_</a>[counts.first];</div>
<div class="line"><a name="l00279"></a><span class="lineno"> 279</span>&#160; userIndices.resize(newNumVecs);</div>
<div class="line"><a name="l00280"></a><span class="lineno"> 280</span>&#160; } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00281"></a><span class="lineno"> 281</span>&#160; <span class="comment">// indices are not stored on the GPU or CPU side</span></div>
<div class="line"><a name="l00282"></a><span class="lineno"> 282</span>&#160; FAISS_ASSERT(<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#afb6d10e23d6448c10f472b9234e0bcab">indicesOptions_</a> == INDICES_IVF);</div>
<div class="line"><a name="l00283"></a><span class="lineno"> 283</span>&#160; }</div>
<div class="line"><a name="l00284"></a><span class="lineno"> 284</span>&#160;</div>
<div class="line"><a name="l00285"></a><span class="lineno"> 285</span>&#160; <span class="comment">// This is used by the multi-pass query to decide how much scratch</span></div>
<div class="line"><a name="l00286"></a><span class="lineno"> 286</span>&#160; <span class="comment">// space to allocate for intermediate results</span></div>
<div class="line"><a name="l00287"></a><span class="lineno"> 287</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#ae25ea0901fb628844868413f51c85bda">maxListLength_</a> = std::max(<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#ae25ea0901fb628844868413f51c85bda">maxListLength_</a>, newNumVecs);</div>
<div class="line"><a name="l00288"></a><span class="lineno"> 288</span>&#160; }</div>
<div class="line"><a name="l00289"></a><span class="lineno"> 289</span>&#160;</div>
<div class="line"><a name="l00290"></a><span class="lineno"> 290</span>&#160; <span class="comment">// Update all pointers and sizes on the device for lists that we</span></div>
<div class="line"><a name="l00291"></a><span class="lineno"> 291</span>&#160; <span class="comment">// appended to</span></div>
<div class="line"><a name="l00292"></a><span class="lineno"> 292</span>&#160; {</div>
<div class="line"><a name="l00293"></a><span class="lineno"> 293</span>&#160; std::vector&lt;int&gt; listIds(assignCounts.size());</div>
<div class="line"><a name="l00294"></a><span class="lineno"> 294</span>&#160; <span class="keywordtype">int</span> i = 0;</div>
<div class="line"><a name="l00295"></a><span class="lineno"> 295</span>&#160; <span class="keywordflow">for</span> (<span class="keyword">auto</span>&amp; counts : assignCounts) {</div>
<div class="line"><a name="l00296"></a><span class="lineno"> 296</span>&#160; listIds[i++] = counts.first;</div>
<div class="line"><a name="l00297"></a><span class="lineno"> 297</span>&#160; }</div>
<div class="line"><a name="l00298"></a><span class="lineno"> 298</span>&#160;</div>
<div class="line"><a name="l00299"></a><span class="lineno"> 299</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#acc695610c9513952b8d234dc0db78e5c">updateDeviceListInfo_</a>(listIds, stream);</div>
<div class="line"><a name="l00300"></a><span class="lineno"> 300</span>&#160; }</div>
<div class="line"><a name="l00301"></a><span class="lineno"> 301</span>&#160; }</div>
<div class="line"><a name="l00302"></a><span class="lineno"> 302</span>&#160;</div>
<div class="line"><a name="l00303"></a><span class="lineno"> 303</span>&#160; <span class="comment">// If we&#39;re maintaining the indices on the CPU side, update our</span></div>
<div class="line"><a name="l00304"></a><span class="lineno"> 304</span>&#160; <span class="comment">// map. We already resized our map above.</span></div>
<div class="line"><a name="l00305"></a><span class="lineno"> 305</span>&#160; <span class="keywordflow">if</span> (<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#afb6d10e23d6448c10f472b9234e0bcab">indicesOptions_</a> == INDICES_CPU) {</div>
<div class="line"><a name="l00306"></a><span class="lineno"> 306</span>&#160; <span class="comment">// We need to maintain the indices on the CPU side</span></div>
<div class="line"><a name="l00307"></a><span class="lineno"> 307</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1HostTensor.html">HostTensor&lt;long, 1, true&gt;</a> hostIndices(indices, stream);</div>
<div class="line"><a name="l00308"></a><span class="lineno"> 308</span>&#160;</div>
<div class="line"><a name="l00309"></a><span class="lineno"> 309</span>&#160; <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; hostIndices.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">getSize</a>(0); ++i) {</div>
<div class="line"><a name="l00310"></a><span class="lineno"> 310</span>&#160; <span class="keywordtype">int</span> listId = listIdsHost[i];</div>
<div class="line"><a name="l00311"></a><span class="lineno"> 311</span>&#160;</div>
<div class="line"><a name="l00312"></a><span class="lineno"> 312</span>&#160; <span class="comment">// Add vector could be invalid (contains NaNs etc)</span></div>
<div class="line"><a name="l00313"></a><span class="lineno"> 313</span>&#160; <span class="keywordflow">if</span> (listId &lt; 0) {</div>
<div class="line"><a name="l00314"></a><span class="lineno"> 314</span>&#160; <span class="keywordflow">continue</span>;</div>
<div class="line"><a name="l00315"></a><span class="lineno"> 315</span>&#160; }</div>
<div class="line"><a name="l00316"></a><span class="lineno"> 316</span>&#160;</div>
<div class="line"><a name="l00317"></a><span class="lineno"> 317</span>&#160; <span class="keywordtype">int</span> offset = listOffsetHost[i];</div>
<div class="line"><a name="l00318"></a><span class="lineno"> 318</span>&#160;</div>
<div class="line"><a name="l00319"></a><span class="lineno"> 319</span>&#160; FAISS_ASSERT(listId &lt; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a53f3c382a79b7f89630a85dfbc3a1fed">listOffsetToUserIndex_</a>.size());</div>
<div class="line"><a name="l00320"></a><span class="lineno"> 320</span>&#160; <span class="keyword">auto</span>&amp; userIndices = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a53f3c382a79b7f89630a85dfbc3a1fed">listOffsetToUserIndex_</a>[listId];</div>
<div class="line"><a name="l00321"></a><span class="lineno"> 321</span>&#160;</div>
<div class="line"><a name="l00322"></a><span class="lineno"> 322</span>&#160; FAISS_ASSERT(offset &lt; userIndices.size());</div>
<div class="line"><a name="l00323"></a><span class="lineno"> 323</span>&#160; userIndices[offset] = hostIndices[i];</div>
<div class="line"><a name="l00324"></a><span class="lineno"> 324</span>&#160; }</div>
<div class="line"><a name="l00325"></a><span class="lineno"> 325</span>&#160; }</div>
<div class="line"><a name="l00326"></a><span class="lineno"> 326</span>&#160;</div>
<div class="line"><a name="l00327"></a><span class="lineno"> 327</span>&#160; <span class="comment">// We similarly need to actually append the new encoded vectors</span></div>
<div class="line"><a name="l00328"></a><span class="lineno"> 328</span>&#160; {</div>
<div class="line"><a name="l00329"></a><span class="lineno"> 329</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;int, 1, true&gt;</a> listOffset(mem, listOffsetHost, stream);</div>
<div class="line"><a name="l00330"></a><span class="lineno"> 330</span>&#160;</div>
<div class="line"><a name="l00331"></a><span class="lineno"> 331</span>&#160; <span class="comment">// This kernel will handle appending each encoded vector + index to</span></div>
<div class="line"><a name="l00332"></a><span class="lineno"> 332</span>&#160; <span class="comment">// the appropriate list</span></div>
<div class="line"><a name="l00333"></a><span class="lineno"> 333</span>&#160; runIVFPQInvertedListAppend(listIds,</div>
<div class="line"><a name="l00334"></a><span class="lineno"> 334</span>&#160; listOffset,</div>
<div class="line"><a name="l00335"></a><span class="lineno"> 335</span>&#160; encodings,</div>
<div class="line"><a name="l00336"></a><span class="lineno"> 336</span>&#160; indices,</div>
<div class="line"><a name="l00337"></a><span class="lineno"> 337</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a96240a08b42bd1913e2286d7d514fc56">deviceListDataPointers_</a>,</div>
<div class="line"><a name="l00338"></a><span class="lineno"> 338</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a9aedcf0e6a20b908980ae96d73461f4c">deviceListIndexPointers_</a>,</div>
<div class="line"><a name="l00339"></a><span class="lineno"> 339</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#afb6d10e23d6448c10f472b9234e0bcab">indicesOptions_</a>,</div>
<div class="line"><a name="l00340"></a><span class="lineno"> 340</span>&#160; stream);</div>
<div class="line"><a name="l00341"></a><span class="lineno"> 341</span>&#160; }</div>
<div class="line"><a name="l00342"></a><span class="lineno"> 342</span>&#160;</div>
<div class="line"><a name="l00343"></a><span class="lineno"> 343</span>&#160; <span class="keywordflow">return</span> numAdded;</div>
<div class="line"><a name="l00344"></a><span class="lineno"> 344</span>&#160;}</div>
<div class="line"><a name="l00345"></a><span class="lineno"> 345</span>&#160;</div>
<div class="line"><a name="l00346"></a><span class="lineno"> 346</span>&#160;<span class="keywordtype">void</span></div>
<div class="line"><a name="l00347"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1IVFPQ.html#a9992b38226dc8f92ca2691582fabb675"> 347</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1IVFPQ.html#a9992b38226dc8f92ca2691582fabb675">IVFPQ::addCodeVectorsFromCpu</a>(<span class="keywordtype">int</span> listId,</div>
<div class="line"><a name="l00348"></a><span class="lineno"> 348</span>&#160; <span class="keyword">const</span> <span class="keywordtype">void</span>* codes,</div>
<div class="line"><a name="l00349"></a><span class="lineno"> 349</span>&#160; <span class="keyword">const</span> <span class="keywordtype">long</span>* indices,</div>
<div class="line"><a name="l00350"></a><span class="lineno"> 350</span>&#160; <span class="keywordtype">size_t</span> numVecs) {</div>
<div class="line"><a name="l00351"></a><span class="lineno"> 351</span>&#160; <span class="comment">// This list must already exist</span></div>
<div class="line"><a name="l00352"></a><span class="lineno"> 352</span>&#160; FAISS_ASSERT(listId &lt; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a2facc7285107de1f24d3471cbcf15f26">deviceListData_</a>.size());</div>
<div class="line"><a name="l00353"></a><span class="lineno"> 353</span>&#160; <span class="keyword">auto</span> stream = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;getDefaultStreamCurrentDevice();</div>
<div class="line"><a name="l00354"></a><span class="lineno"> 354</span>&#160;</div>
<div class="line"><a name="l00355"></a><span class="lineno"> 355</span>&#160; <span class="comment">// If there&#39;s nothing to add, then there&#39;s nothing we have to do</span></div>
<div class="line"><a name="l00356"></a><span class="lineno"> 356</span>&#160; <span class="keywordflow">if</span> (numVecs == 0) {</div>
<div class="line"><a name="l00357"></a><span class="lineno"> 357</span>&#160; <span class="keywordflow">return</span>;</div>
<div class="line"><a name="l00358"></a><span class="lineno"> 358</span>&#160; }</div>
<div class="line"><a name="l00359"></a><span class="lineno"> 359</span>&#160;</div>
<div class="line"><a name="l00360"></a><span class="lineno"> 360</span>&#160; <span class="keywordtype">size_t</span> lengthInBytes = numVecs * <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a319568b832518392fed33ea4f8bfc613">bytesPerVector_</a>;</div>
<div class="line"><a name="l00361"></a><span class="lineno"> 361</span>&#160;</div>
<div class="line"><a name="l00362"></a><span class="lineno"> 362</span>&#160; <span class="keyword">auto</span>&amp; listCodes = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a2facc7285107de1f24d3471cbcf15f26">deviceListData_</a>[listId];</div>
<div class="line"><a name="l00363"></a><span class="lineno"> 363</span>&#160; <span class="keyword">auto</span> prevCodeData = listCodes-&gt;data();</div>
<div class="line"><a name="l00364"></a><span class="lineno"> 364</span>&#160;</div>
<div class="line"><a name="l00365"></a><span class="lineno"> 365</span>&#160; <span class="comment">// We only have int32 length representations on the GPU per each</span></div>
<div class="line"><a name="l00366"></a><span class="lineno"> 366</span>&#160; <span class="comment">// list; the length is in sizeof(char)</span></div>
<div class="line"><a name="l00367"></a><span class="lineno"> 367</span>&#160; FAISS_ASSERT(listCodes-&gt;size() % bytesPerVector_ == 0);</div>
<div class="line"><a name="l00368"></a><span class="lineno"> 368</span>&#160; FAISS_ASSERT(listCodes-&gt;size() + lengthInBytes &lt;=</div>
<div class="line"><a name="l00369"></a><span class="lineno"> 369</span>&#160; (size_t) std::numeric_limits&lt;int&gt;::max());</div>
<div class="line"><a name="l00370"></a><span class="lineno"> 370</span>&#160;</div>
<div class="line"><a name="l00371"></a><span class="lineno"> 371</span>&#160; listCodes-&gt;append((<span class="keywordtype">unsigned</span> <span class="keywordtype">char</span>*) codes,</div>
<div class="line"><a name="l00372"></a><span class="lineno"> 372</span>&#160; lengthInBytes,</div>
<div class="line"><a name="l00373"></a><span class="lineno"> 373</span>&#160; stream,</div>
<div class="line"><a name="l00374"></a><span class="lineno"> 374</span>&#160; <span class="keyword">true</span> <span class="comment">/* exact reserved size */</span>);</div>
<div class="line"><a name="l00375"></a><span class="lineno"> 375</span>&#160;</div>
<div class="line"><a name="l00376"></a><span class="lineno"> 376</span>&#160; <span class="comment">// Handle the indices as well</span></div>
<div class="line"><a name="l00377"></a><span class="lineno"> 377</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a5027720549de98f4e609d6339099df35">addIndicesFromCpu_</a>(listId, indices, numVecs);</div>
<div class="line"><a name="l00378"></a><span class="lineno"> 378</span>&#160;</div>
<div class="line"><a name="l00379"></a><span class="lineno"> 379</span>&#160; <span class="comment">// This list address may have changed due to vector resizing, but</span></div>
<div class="line"><a name="l00380"></a><span class="lineno"> 380</span>&#160; <span class="comment">// only bother updating it on the device if it has changed</span></div>
<div class="line"><a name="l00381"></a><span class="lineno"> 381</span>&#160; <span class="keywordflow">if</span> (prevCodeData != listCodes-&gt;data()) {</div>
<div class="line"><a name="l00382"></a><span class="lineno"> 382</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a96240a08b42bd1913e2286d7d514fc56">deviceListDataPointers_</a>[listId] = listCodes-&gt;data();</div>
<div class="line"><a name="l00383"></a><span class="lineno"> 383</span>&#160; }</div>
<div class="line"><a name="l00384"></a><span class="lineno"> 384</span>&#160;</div>
<div class="line"><a name="l00385"></a><span class="lineno"> 385</span>&#160; <span class="comment">// And our size has changed too</span></div>
<div class="line"><a name="l00386"></a><span class="lineno"> 386</span>&#160; <span class="keywordtype">int</span> listLength = listCodes-&gt;size() / <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a319568b832518392fed33ea4f8bfc613">bytesPerVector_</a>;</div>
<div class="line"><a name="l00387"></a><span class="lineno"> 387</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a3a1c2031a4763f7d55bc8a400c63af66">deviceListLengths_</a>[listId] = listLength;</div>
<div class="line"><a name="l00388"></a><span class="lineno"> 388</span>&#160;</div>
<div class="line"><a name="l00389"></a><span class="lineno"> 389</span>&#160; <span class="comment">// We update this as well, since the multi-pass algorithm uses it</span></div>
<div class="line"><a name="l00390"></a><span class="lineno"> 390</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#ae25ea0901fb628844868413f51c85bda">maxListLength_</a> = std::max(<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#ae25ea0901fb628844868413f51c85bda">maxListLength_</a>, listLength);</div>
<div class="line"><a name="l00391"></a><span class="lineno"> 391</span>&#160;</div>
<div class="line"><a name="l00392"></a><span class="lineno"> 392</span>&#160; <span class="comment">// device_vector add is potentially happening on a different stream</span></div>
<div class="line"><a name="l00393"></a><span class="lineno"> 393</span>&#160; <span class="comment">// than our default stream</span></div>
<div class="line"><a name="l00394"></a><span class="lineno"> 394</span>&#160; <span class="keywordflow">if</span> (<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;getDefaultStreamCurrentDevice() != 0) {</div>
<div class="line"><a name="l00395"></a><span class="lineno"> 395</span>&#160; streamWait({stream}, {0});</div>
<div class="line"><a name="l00396"></a><span class="lineno"> 396</span>&#160; }</div>
<div class="line"><a name="l00397"></a><span class="lineno"> 397</span>&#160;}</div>
<div class="line"><a name="l00398"></a><span class="lineno"> 398</span>&#160;</div>
<div class="line"><a name="l00399"></a><span class="lineno"> 399</span>&#160;<span class="keywordtype">void</span></div>
<div class="line"><a name="l00400"></a><span class="lineno"> 400</span>&#160;IVFPQ::setPQCentroids_(<span class="keywordtype">float</span>* data) {</div>
<div class="line"><a name="l00401"></a><span class="lineno"> 401</span>&#160; <span class="keywordtype">size_t</span> pqSize =</div>
<div class="line"><a name="l00402"></a><span class="lineno"> 402</span>&#160; numSubQuantizers_ * numSubQuantizerCodes_ * dimPerSubQuantizer_;</div>
<div class="line"><a name="l00403"></a><span class="lineno"> 403</span>&#160;</div>
<div class="line"><a name="l00404"></a><span class="lineno"> 404</span>&#160; <span class="comment">// Make sure the data is on the host</span></div>
<div class="line"><a name="l00405"></a><span class="lineno"> 405</span>&#160; <span class="comment">// FIXME: why are we doing this?</span></div>
<div class="line"><a name="l00406"></a><span class="lineno"> 406</span>&#160; thrust::host_vector&lt;float&gt; hostMemory;</div>
<div class="line"><a name="l00407"></a><span class="lineno"> 407</span>&#160; hostMemory.insert(hostMemory.end(), data, data + pqSize);</div>
<div class="line"><a name="l00408"></a><span class="lineno"> 408</span>&#160;</div>
<div class="line"><a name="l00409"></a><span class="lineno"> 409</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1HostTensor.html">HostTensor&lt;float, 3, true&gt;</a> pqHost(</div>
<div class="line"><a name="l00410"></a><span class="lineno"> 410</span>&#160; hostMemory.data(),</div>
<div class="line"><a name="l00411"></a><span class="lineno"> 411</span>&#160; {numSubQuantizers_, numSubQuantizerCodes_, dimPerSubQuantizer_});</div>
<div class="line"><a name="l00412"></a><span class="lineno"> 412</span>&#160; DeviceTensor&lt;float, 3, true&gt; pqDevice(</div>
<div class="line"><a name="l00413"></a><span class="lineno"> 413</span>&#160; pqHost,</div>
<div class="line"><a name="l00414"></a><span class="lineno"> 414</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;getDefaultStreamCurrentDevice());</div>
<div class="line"><a name="l00415"></a><span class="lineno"> 415</span>&#160;</div>
<div class="line"><a name="l00416"></a><span class="lineno"> 416</span>&#160; DeviceTensor&lt;float, 3, true&gt; pqDeviceTranspose(</div>
<div class="line"><a name="l00417"></a><span class="lineno"> 417</span>&#160; {numSubQuantizers_, dimPerSubQuantizer_, numSubQuantizerCodes_});</div>
<div class="line"><a name="l00418"></a><span class="lineno"> 418</span>&#160; runTransposeAny(pqDevice, 1, 2, pqDeviceTranspose,</div>
<div class="line"><a name="l00419"></a><span class="lineno"> 419</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;getDefaultStreamCurrentDevice());</div>
<div class="line"><a name="l00420"></a><span class="lineno"> 420</span>&#160;</div>
<div class="line"><a name="l00421"></a><span class="lineno"> 421</span>&#160; pqCentroidsInnermostCode_ = std::move(pqDeviceTranspose);</div>
<div class="line"><a name="l00422"></a><span class="lineno"> 422</span>&#160;</div>
<div class="line"><a name="l00423"></a><span class="lineno"> 423</span>&#160; <span class="comment">// Also maintain the PQ centroids in the form</span></div>
<div class="line"><a name="l00424"></a><span class="lineno"> 424</span>&#160; <span class="comment">// (sub q)(code id)(sub dim)</span></div>
<div class="line"><a name="l00425"></a><span class="lineno"> 425</span>&#160; DeviceTensor&lt;float, 3, true&gt; pqCentroidsMiddleCode(</div>
<div class="line"><a name="l00426"></a><span class="lineno"> 426</span>&#160; {numSubQuantizers_, numSubQuantizerCodes_, dimPerSubQuantizer_});</div>
<div class="line"><a name="l00427"></a><span class="lineno"> 427</span>&#160; runTransposeAny(pqCentroidsInnermostCode_, 1, 2, pqCentroidsMiddleCode,</div>
<div class="line"><a name="l00428"></a><span class="lineno"> 428</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;getDefaultStreamCurrentDevice());</div>
<div class="line"><a name="l00429"></a><span class="lineno"> 429</span>&#160;</div>
<div class="line"><a name="l00430"></a><span class="lineno"> 430</span>&#160; pqCentroidsMiddleCode_ = std::move(pqCentroidsMiddleCode);</div>
<div class="line"><a name="l00431"></a><span class="lineno"> 431</span>&#160;}</div>
<div class="line"><a name="l00432"></a><span class="lineno"> 432</span>&#160;</div>
<div class="line"><a name="l00433"></a><span class="lineno"> 433</span>&#160;<span class="keywordtype">void</span></div>
<div class="line"><a name="l00434"></a><span class="lineno"> 434</span>&#160;IVFPQ::precomputeCodes_() {</div>
<div class="line"><a name="l00435"></a><span class="lineno"> 435</span>&#160; <span class="comment">//</span></div>
<div class="line"><a name="l00436"></a><span class="lineno"> 436</span>&#160; <span class="comment">// d = || x - y_C ||^2 + || y_R ||^2 + 2 * (y_C|y_R) - 2 * (x|y_R)</span></div>
<div class="line"><a name="l00437"></a><span class="lineno"> 437</span>&#160; <span class="comment">// --------------- --------------------------- -------</span></div>
<div class="line"><a name="l00438"></a><span class="lineno"> 438</span>&#160; <span class="comment">// term 1 term 2 term 3</span></div>
<div class="line"><a name="l00439"></a><span class="lineno"> 439</span>&#160; <span class="comment">//</span></div>
<div class="line"><a name="l00440"></a><span class="lineno"> 440</span>&#160;</div>
<div class="line"><a name="l00441"></a><span class="lineno"> 441</span>&#160; <span class="comment">// Terms 1 and 3 are available only at query time. We compute term 2</span></div>
<div class="line"><a name="l00442"></a><span class="lineno"> 442</span>&#160; <span class="comment">// here.</span></div>
<div class="line"><a name="l00443"></a><span class="lineno"> 443</span>&#160; FAISS_ASSERT(!<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a878114abdba07c9cf7735f9c0ed594c3">quantizer_</a>-&gt;getUseFloat16());</div>
<div class="line"><a name="l00444"></a><span class="lineno"> 444</span>&#160; <span class="keyword">auto</span>&amp; coarseCentroids = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a878114abdba07c9cf7735f9c0ed594c3">quantizer_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1FlatIndex.html#a12058744ffb3fbcbb047872449269c06">getVectorsFloat32Ref</a>();</div>
<div class="line"><a name="l00445"></a><span class="lineno"> 445</span>&#160;</div>
<div class="line"><a name="l00446"></a><span class="lineno"> 446</span>&#160; <span class="comment">// Compute ||y_R||^2 by treating</span></div>
<div class="line"><a name="l00447"></a><span class="lineno"> 447</span>&#160; <span class="comment">// (sub q)(code id)(sub dim) as (sub q * code id)(sub dim)</span></div>
<div class="line"><a name="l00448"></a><span class="lineno"> 448</span>&#160; <span class="keyword">auto</span> pqCentroidsMiddleCodeView =</div>
<div class="line"><a name="l00449"></a><span class="lineno"> 449</span>&#160; pqCentroidsMiddleCode_.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a3095eaec5711fe697c16c21598a8ddc1">view</a>&lt;2&gt;(</div>
<div class="line"><a name="l00450"></a><span class="lineno"> 450</span>&#160; {numSubQuantizers_ * numSubQuantizerCodes_, dimPerSubQuantizer_});</div>
<div class="line"><a name="l00451"></a><span class="lineno"> 451</span>&#160; DeviceTensor&lt;float, 1, true&gt; subQuantizerNorms(</div>
<div class="line"><a name="l00452"></a><span class="lineno"> 452</span>&#160; {numSubQuantizers_ * numSubQuantizerCodes_});</div>
<div class="line"><a name="l00453"></a><span class="lineno"> 453</span>&#160;</div>
<div class="line"><a name="l00454"></a><span class="lineno"> 454</span>&#160; runL2Norm(pqCentroidsMiddleCodeView, subQuantizerNorms, <span class="keyword">true</span>,</div>
<div class="line"><a name="l00455"></a><span class="lineno"> 455</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;getDefaultStreamCurrentDevice());</div>
<div class="line"><a name="l00456"></a><span class="lineno"> 456</span>&#160;</div>
<div class="line"><a name="l00457"></a><span class="lineno"> 457</span>&#160; <span class="comment">// Compute 2 * (y_C|y_R) via batch matrix multiplication</span></div>
<div class="line"><a name="l00458"></a><span class="lineno"> 458</span>&#160; <span class="comment">// batch size (sub q) x {(centroid id)(sub dim) x (code id)(sub dim)&#39;}</span></div>
<div class="line"><a name="l00459"></a><span class="lineno"> 459</span>&#160; <span class="comment">// =&gt; (sub q) x {(centroid id)(code id)}</span></div>
<div class="line"><a name="l00460"></a><span class="lineno"> 460</span>&#160; <span class="comment">// =&gt; (sub q)(centroid id)(code id)</span></div>
<div class="line"><a name="l00461"></a><span class="lineno"> 461</span>&#160;</div>
<div class="line"><a name="l00462"></a><span class="lineno"> 462</span>&#160; <span class="comment">// View (centroid id)(dim) as</span></div>
<div class="line"><a name="l00463"></a><span class="lineno"> 463</span>&#160; <span class="comment">// (centroid id)(sub q)(dim)</span></div>
<div class="line"><a name="l00464"></a><span class="lineno"> 464</span>&#160; <span class="comment">// Transpose (centroid id)(sub q)(sub dim) to</span></div>
<div class="line"><a name="l00465"></a><span class="lineno"> 465</span>&#160; <span class="comment">// (sub q)(centroid id)(sub dim)</span></div>
<div class="line"><a name="l00466"></a><span class="lineno"> 466</span>&#160; <span class="keyword">auto</span> centroidView = coarseCentroids.view&lt;3&gt;(</div>
<div class="line"><a name="l00467"></a><span class="lineno"> 467</span>&#160; {coarseCentroids.getSize(0), numSubQuantizers_, dimPerSubQuantizer_});</div>
<div class="line"><a name="l00468"></a><span class="lineno"> 468</span>&#160; DeviceTensor&lt;float, 3, true&gt; centroidsTransposed(</div>
<div class="line"><a name="l00469"></a><span class="lineno"> 469</span>&#160; {numSubQuantizers_, coarseCentroids.getSize(0), dimPerSubQuantizer_});</div>
<div class="line"><a name="l00470"></a><span class="lineno"> 470</span>&#160;</div>
<div class="line"><a name="l00471"></a><span class="lineno"> 471</span>&#160; runTransposeAny(centroidView, 0, 1, centroidsTransposed,</div>
<div class="line"><a name="l00472"></a><span class="lineno"> 472</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;getDefaultStreamCurrentDevice());</div>
<div class="line"><a name="l00473"></a><span class="lineno"> 473</span>&#160;</div>
<div class="line"><a name="l00474"></a><span class="lineno"> 474</span>&#160; DeviceTensor&lt;float, 3, true&gt; coarsePQProduct(</div>
<div class="line"><a name="l00475"></a><span class="lineno"> 475</span>&#160; {numSubQuantizers_, coarseCentroids.getSize(0), numSubQuantizerCodes_});</div>
<div class="line"><a name="l00476"></a><span class="lineno"> 476</span>&#160;</div>
<div class="line"><a name="l00477"></a><span class="lineno"> 477</span>&#160; runIteratedMatrixMult(coarsePQProduct, <span class="keyword">false</span>,</div>
<div class="line"><a name="l00478"></a><span class="lineno"> 478</span>&#160; centroidsTransposed, <span class="keyword">false</span>,</div>
<div class="line"><a name="l00479"></a><span class="lineno"> 479</span>&#160; pqCentroidsMiddleCode_, <span class="keyword">true</span>,</div>
<div class="line"><a name="l00480"></a><span class="lineno"> 480</span>&#160; 2.0f, 0.0f,</div>
<div class="line"><a name="l00481"></a><span class="lineno"> 481</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;getBlasHandleCurrentDevice(),</div>
<div class="line"><a name="l00482"></a><span class="lineno"> 482</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;getDefaultStreamCurrentDevice());</div>
<div class="line"><a name="l00483"></a><span class="lineno"> 483</span>&#160;</div>
<div class="line"><a name="l00484"></a><span class="lineno"> 484</span>&#160; <span class="comment">// Transpose (sub q)(centroid id)(code id) to</span></div>
<div class="line"><a name="l00485"></a><span class="lineno"> 485</span>&#160; <span class="comment">// (centroid id)(sub q)(code id)</span></div>
<div class="line"><a name="l00486"></a><span class="lineno"> 486</span>&#160; DeviceTensor&lt;float, 3, true&gt; coarsePQProductTransposed(</div>
<div class="line"><a name="l00487"></a><span class="lineno"> 487</span>&#160; {coarseCentroids.getSize(0), numSubQuantizers_, numSubQuantizerCodes_});</div>
<div class="line"><a name="l00488"></a><span class="lineno"> 488</span>&#160; runTransposeAny(coarsePQProduct, 0, 1, coarsePQProductTransposed,</div>
<div class="line"><a name="l00489"></a><span class="lineno"> 489</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;getDefaultStreamCurrentDevice());</div>
<div class="line"><a name="l00490"></a><span class="lineno"> 490</span>&#160;</div>
<div class="line"><a name="l00491"></a><span class="lineno"> 491</span>&#160; <span class="comment">// View (centroid id)(sub q)(code id) as</span></div>
<div class="line"><a name="l00492"></a><span class="lineno"> 492</span>&#160; <span class="comment">// (centroid id)(sub q * code id)</span></div>
<div class="line"><a name="l00493"></a><span class="lineno"> 493</span>&#160; <span class="keyword">auto</span> coarsePQProductTransposedView = coarsePQProductTransposed.view&lt;2&gt;(</div>
<div class="line"><a name="l00494"></a><span class="lineno"> 494</span>&#160; {coarseCentroids.getSize(0), numSubQuantizers_ * numSubQuantizerCodes_});</div>
<div class="line"><a name="l00495"></a><span class="lineno"> 495</span>&#160;</div>
<div class="line"><a name="l00496"></a><span class="lineno"> 496</span>&#160; <span class="comment">// Sum || y_R ||^2 + 2 * (y_C|y_R)</span></div>
<div class="line"><a name="l00497"></a><span class="lineno"> 497</span>&#160; <span class="comment">// i.e., add norms (sub q * code id)</span></div>
<div class="line"><a name="l00498"></a><span class="lineno"> 498</span>&#160; <span class="comment">// along columns of inner product (centroid id)(sub q * code id)</span></div>
<div class="line"><a name="l00499"></a><span class="lineno"> 499</span>&#160; runSumAlongColumns(subQuantizerNorms, coarsePQProductTransposedView,</div>
<div class="line"><a name="l00500"></a><span class="lineno"> 500</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;getDefaultStreamCurrentDevice());</div>
<div class="line"><a name="l00501"></a><span class="lineno"> 501</span>&#160;</div>
<div class="line"><a name="l00502"></a><span class="lineno"> 502</span>&#160;<span class="preprocessor">#ifdef FAISS_USE_FLOAT16</span></div>
<div class="line"><a name="l00503"></a><span class="lineno"> 503</span>&#160;<span class="preprocessor"></span> <span class="keywordflow">if</span> (useFloat16LookupTables_) {</div>
<div class="line"><a name="l00504"></a><span class="lineno"> 504</span>&#160; precomputedCodeHalf_ = toHalf(<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>,</div>
<div class="line"><a name="l00505"></a><span class="lineno"> 505</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;getDefaultStreamCurrentDevice(),</div>
<div class="line"><a name="l00506"></a><span class="lineno"> 506</span>&#160; coarsePQProductTransposed);</div>
<div class="line"><a name="l00507"></a><span class="lineno"> 507</span>&#160; <span class="keywordflow">return</span>;</div>
<div class="line"><a name="l00508"></a><span class="lineno"> 508</span>&#160; }</div>
<div class="line"><a name="l00509"></a><span class="lineno"> 509</span>&#160;<span class="preprocessor">#endif</span></div>
<div class="line"><a name="l00510"></a><span class="lineno"> 510</span>&#160;<span class="preprocessor"></span></div>
<div class="line"><a name="l00511"></a><span class="lineno"> 511</span>&#160; <span class="comment">// We added into the view, so `coarsePQProductTransposed` is now our</span></div>
<div class="line"><a name="l00512"></a><span class="lineno"> 512</span>&#160; <span class="comment">// precomputed term 2.</span></div>
<div class="line"><a name="l00513"></a><span class="lineno"> 513</span>&#160; precomputedCode_ = std::move(coarsePQProductTransposed);</div>
<div class="line"><a name="l00514"></a><span class="lineno"> 514</span>&#160;}</div>
<div class="line"><a name="l00515"></a><span class="lineno"> 515</span>&#160;</div>
<div class="line"><a name="l00516"></a><span class="lineno"> 516</span>&#160;<span class="keywordtype">void</span></div>
<div class="line"><a name="l00517"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1IVFPQ.html#ab0c458aab9a3d903f31b0e63ce16e623"> 517</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1IVFPQ.html#ab0c458aab9a3d903f31b0e63ce16e623">IVFPQ::query</a>(<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;float, 2, true&gt;</a>&amp; queries,</div>
<div class="line"><a name="l00518"></a><span class="lineno"> 518</span>&#160; <span class="keywordtype">int</span> nprobe,</div>
<div class="line"><a name="l00519"></a><span class="lineno"> 519</span>&#160; <span class="keywordtype">int</span> k,</div>
<div class="line"><a name="l00520"></a><span class="lineno"> 520</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;float, 2, true&gt;</a>&amp; outDistances,</div>
<div class="line"><a name="l00521"></a><span class="lineno"> 521</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;long, 2, true&gt;</a>&amp; outIndices) {</div>
<div class="line"><a name="l00522"></a><span class="lineno"> 522</span>&#160; <span class="comment">// Validate these at a top level</span></div>
<div class="line"><a name="l00523"></a><span class="lineno"> 523</span>&#160; FAISS_ASSERT(nprobe &lt;= 1024);</div>
<div class="line"><a name="l00524"></a><span class="lineno"> 524</span>&#160; FAISS_ASSERT(k &lt;= 1024);</div>
<div class="line"><a name="l00525"></a><span class="lineno"> 525</span>&#160;</div>
<div class="line"><a name="l00526"></a><span class="lineno"> 526</span>&#160; <span class="keyword">auto</span>&amp; mem = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;getMemoryManagerCurrentDevice();</div>
<div class="line"><a name="l00527"></a><span class="lineno"> 527</span>&#160; <span class="keyword">auto</span> stream = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;getDefaultStreamCurrentDevice();</div>
<div class="line"><a name="l00528"></a><span class="lineno"> 528</span>&#160; nprobe = std::min(nprobe, <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a878114abdba07c9cf7735f9c0ed594c3">quantizer_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1FlatIndex.html#a6988df17792dae30f24cc859728777e6">getSize</a>());</div>
<div class="line"><a name="l00529"></a><span class="lineno"> 529</span>&#160;</div>
<div class="line"><a name="l00530"></a><span class="lineno"> 530</span>&#160; FAISS_ASSERT(queries.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">getSize</a>(1) == <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#aba3e3cfa469e5187f2d553fff10e0250">dim_</a>);</div>
<div class="line"><a name="l00531"></a><span class="lineno"> 531</span>&#160; FAISS_ASSERT(outDistances.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">getSize</a>(0) == queries.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">getSize</a>(0));</div>
<div class="line"><a name="l00532"></a><span class="lineno"> 532</span>&#160; FAISS_ASSERT(outIndices.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">getSize</a>(0) == queries.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">getSize</a>(0));</div>
<div class="line"><a name="l00533"></a><span class="lineno"> 533</span>&#160;</div>
<div class="line"><a name="l00534"></a><span class="lineno"> 534</span>&#160; <span class="comment">// Reserve space for the closest coarse centroids</span></div>
<div class="line"><a name="l00535"></a><span class="lineno"> 535</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;float, 2, true&gt;</a></div>
<div class="line"><a name="l00536"></a><span class="lineno"> 536</span>&#160; coarseDistances(mem, {queries.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">getSize</a>(0), nprobe}, stream);</div>
<div class="line"><a name="l00537"></a><span class="lineno"> 537</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;int, 2, true&gt;</a></div>
<div class="line"><a name="l00538"></a><span class="lineno"> 538</span>&#160; coarseIndices(mem, {queries.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">getSize</a>(0), nprobe}, stream);</div>
<div class="line"><a name="l00539"></a><span class="lineno"> 539</span>&#160;</div>
<div class="line"><a name="l00540"></a><span class="lineno"> 540</span>&#160; <span class="comment">// Find the `nprobe` closest coarse centroids; we can use int</span></div>
<div class="line"><a name="l00541"></a><span class="lineno"> 541</span>&#160; <span class="comment">// indices both internally and externally</span></div>
<div class="line"><a name="l00542"></a><span class="lineno"> 542</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a878114abdba07c9cf7735f9c0ed594c3">quantizer_</a>-&gt;query(queries,</div>
<div class="line"><a name="l00543"></a><span class="lineno"> 543</span>&#160; nprobe,</div>
<div class="line"><a name="l00544"></a><span class="lineno"> 544</span>&#160; coarseDistances,</div>
<div class="line"><a name="l00545"></a><span class="lineno"> 545</span>&#160; coarseIndices,</div>
<div class="line"><a name="l00546"></a><span class="lineno"> 546</span>&#160; <span class="keyword">true</span>);</div>
<div class="line"><a name="l00547"></a><span class="lineno"> 547</span>&#160;</div>
<div class="line"><a name="l00548"></a><span class="lineno"> 548</span>&#160; <span class="keywordflow">if</span> (precomputedCodes_) {</div>
<div class="line"><a name="l00549"></a><span class="lineno"> 549</span>&#160; runPQPrecomputedCodes_(queries,</div>
<div class="line"><a name="l00550"></a><span class="lineno"> 550</span>&#160; coarseDistances,</div>
<div class="line"><a name="l00551"></a><span class="lineno"> 551</span>&#160; coarseIndices,</div>
<div class="line"><a name="l00552"></a><span class="lineno"> 552</span>&#160; k,</div>
<div class="line"><a name="l00553"></a><span class="lineno"> 553</span>&#160; outDistances,</div>
<div class="line"><a name="l00554"></a><span class="lineno"> 554</span>&#160; outIndices);</div>
<div class="line"><a name="l00555"></a><span class="lineno"> 555</span>&#160; } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00556"></a><span class="lineno"> 556</span>&#160; runPQNoPrecomputedCodes_(queries,</div>
<div class="line"><a name="l00557"></a><span class="lineno"> 557</span>&#160; coarseDistances,</div>
<div class="line"><a name="l00558"></a><span class="lineno"> 558</span>&#160; coarseIndices,</div>
<div class="line"><a name="l00559"></a><span class="lineno"> 559</span>&#160; k,</div>
<div class="line"><a name="l00560"></a><span class="lineno"> 560</span>&#160; outDistances,</div>
<div class="line"><a name="l00561"></a><span class="lineno"> 561</span>&#160; outIndices);</div>
<div class="line"><a name="l00562"></a><span class="lineno"> 562</span>&#160; }</div>
<div class="line"><a name="l00563"></a><span class="lineno"> 563</span>&#160;</div>
<div class="line"><a name="l00564"></a><span class="lineno"> 564</span>&#160; <span class="comment">// If the GPU isn&#39;t storing indices (they are on the CPU side), we</span></div>
<div class="line"><a name="l00565"></a><span class="lineno"> 565</span>&#160; <span class="comment">// need to perform the re-mapping here</span></div>
<div class="line"><a name="l00566"></a><span class="lineno"> 566</span>&#160; <span class="comment">// FIXME: we might ultimately be calling this function with inputs</span></div>
<div class="line"><a name="l00567"></a><span class="lineno"> 567</span>&#160; <span class="comment">// from the CPU, these are unnecessary copies</span></div>
<div class="line"><a name="l00568"></a><span class="lineno"> 568</span>&#160; <span class="keywordflow">if</span> (<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#afb6d10e23d6448c10f472b9234e0bcab">indicesOptions_</a> == INDICES_CPU) {</div>
<div class="line"><a name="l00569"></a><span class="lineno"> 569</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1HostTensor.html">HostTensor&lt;long, 2, true&gt;</a> hostOutIndices(outIndices, stream);</div>
<div class="line"><a name="l00570"></a><span class="lineno"> 570</span>&#160;</div>
<div class="line"><a name="l00571"></a><span class="lineno"> 571</span>&#160; ivfOffsetToUserIndex(hostOutIndices.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a37d3ac0dffcaad29f09d6e85fb07b335">data</a>(),</div>
<div class="line"><a name="l00572"></a><span class="lineno"> 572</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#accc4d96c14643e5f471220cb1e92ac70">numLists_</a>,</div>
<div class="line"><a name="l00573"></a><span class="lineno"> 573</span>&#160; hostOutIndices.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">getSize</a>(0),</div>
<div class="line"><a name="l00574"></a><span class="lineno"> 574</span>&#160; hostOutIndices.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">getSize</a>(1),</div>
<div class="line"><a name="l00575"></a><span class="lineno"> 575</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a53f3c382a79b7f89630a85dfbc3a1fed">listOffsetToUserIndex_</a>);</div>
<div class="line"><a name="l00576"></a><span class="lineno"> 576</span>&#160;</div>
<div class="line"><a name="l00577"></a><span class="lineno"> 577</span>&#160; <span class="comment">// Copy back to GPU, since the input to this function is on the</span></div>
<div class="line"><a name="l00578"></a><span class="lineno"> 578</span>&#160; <span class="comment">// GPU</span></div>
<div class="line"><a name="l00579"></a><span class="lineno"> 579</span>&#160; outIndices.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#ae981a94263044f38be89d690dd958426">copyFrom</a>(hostOutIndices, stream);</div>
<div class="line"><a name="l00580"></a><span class="lineno"> 580</span>&#160; }</div>
<div class="line"><a name="l00581"></a><span class="lineno"> 581</span>&#160;}</div>
<div class="line"><a name="l00582"></a><span class="lineno"> 582</span>&#160;</div>
<div class="line"><a name="l00583"></a><span class="lineno"> 583</span>&#160;std::vector&lt;unsigned char&gt;</div>
<div class="line"><a name="l00584"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1IVFPQ.html#a5b349dd021b11b5f48531825359b0657"> 584</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1IVFPQ.html#a5b349dd021b11b5f48531825359b0657">IVFPQ::getListCodes</a>(<span class="keywordtype">int</span> listId)<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00585"></a><span class="lineno"> 585</span>&#160; FAISS_ASSERT(listId &lt; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a2facc7285107de1f24d3471cbcf15f26">deviceListData_</a>.size());</div>
<div class="line"><a name="l00586"></a><span class="lineno"> 586</span>&#160;</div>
<div class="line"><a name="l00587"></a><span class="lineno"> 587</span>&#160; <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a2facc7285107de1f24d3471cbcf15f26">deviceListData_</a>[listId]-&gt;copyToHost&lt;<span class="keywordtype">unsigned</span> <span class="keywordtype">char</span>&gt;(</div>
<div class="line"><a name="l00588"></a><span class="lineno"> 588</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;getDefaultStreamCurrentDevice());</div>
<div class="line"><a name="l00589"></a><span class="lineno"> 589</span>&#160;}</div>
<div class="line"><a name="l00590"></a><span class="lineno"> 590</span>&#160;</div>
<div class="line"><a name="l00591"></a><span class="lineno"> 591</span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;float, 3, true&gt;</a></div>
<div class="line"><a name="l00592"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1IVFPQ.html#a3e8bff50f894c243c62e832f923e88e7"> 592</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1IVFPQ.html#a3e8bff50f894c243c62e832f923e88e7">IVFPQ::getPQCentroids</a>() {</div>
<div class="line"><a name="l00593"></a><span class="lineno"> 593</span>&#160; <span class="keywordflow">return</span> pqCentroidsMiddleCode_;</div>
<div class="line"><a name="l00594"></a><span class="lineno"> 594</span>&#160;}</div>
<div class="line"><a name="l00595"></a><span class="lineno"> 595</span>&#160;</div>
<div class="line"><a name="l00596"></a><span class="lineno"> 596</span>&#160;<span class="keywordtype">void</span></div>
<div class="line"><a name="l00597"></a><span class="lineno"> 597</span>&#160;IVFPQ::runPQPrecomputedCodes_(</div>
<div class="line"><a name="l00598"></a><span class="lineno"> 598</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;float, 2, true&gt;</a>&amp; queries,</div>
<div class="line"><a name="l00599"></a><span class="lineno"> 599</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;float, 2, true&gt;</a>&amp; coarseDistances,</div>
<div class="line"><a name="l00600"></a><span class="lineno"> 600</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;int, 2, true&gt;</a>&amp; coarseIndices,</div>
<div class="line"><a name="l00601"></a><span class="lineno"> 601</span>&#160; <span class="keywordtype">int</span> k,</div>
<div class="line"><a name="l00602"></a><span class="lineno"> 602</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;float, 2, true&gt;</a>&amp; outDistances,</div>
<div class="line"><a name="l00603"></a><span class="lineno"> 603</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;long, 2, true&gt;</a>&amp; outIndices) {</div>
<div class="line"><a name="l00604"></a><span class="lineno"> 604</span>&#160; <span class="keyword">auto</span>&amp; mem = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;getMemoryManagerCurrentDevice();</div>
<div class="line"><a name="l00605"></a><span class="lineno"> 605</span>&#160; <span class="keyword">auto</span> stream = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;getDefaultStreamCurrentDevice();</div>
<div class="line"><a name="l00606"></a><span class="lineno"> 606</span>&#160;</div>
<div class="line"><a name="l00607"></a><span class="lineno"> 607</span>&#160; <span class="comment">// Compute precomputed code term 3, - 2 * (x|y_R)</span></div>
<div class="line"><a name="l00608"></a><span class="lineno"> 608</span>&#160; <span class="comment">// This is done via batch MM</span></div>
<div class="line"><a name="l00609"></a><span class="lineno"> 609</span>&#160; <span class="comment">// {sub q} x {(query id)(sub dim) * (code id)(sub dim)&#39;} =&gt;</span></div>
<div class="line"><a name="l00610"></a><span class="lineno"> 610</span>&#160; <span class="comment">// {sub q} x {(query id)(code id)}</span></div>
<div class="line"><a name="l00611"></a><span class="lineno"> 611</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;float, 3, true&gt;</a> term3Transposed(</div>
<div class="line"><a name="l00612"></a><span class="lineno"> 612</span>&#160; mem,</div>
<div class="line"><a name="l00613"></a><span class="lineno"> 613</span>&#160; {queries.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">getSize</a>(0), numSubQuantizers_, numSubQuantizerCodes_},</div>
<div class="line"><a name="l00614"></a><span class="lineno"> 614</span>&#160; stream);</div>
<div class="line"><a name="l00615"></a><span class="lineno"> 615</span>&#160;</div>
<div class="line"><a name="l00616"></a><span class="lineno"> 616</span>&#160; <span class="comment">// These allocations within are only temporary, so release them when</span></div>
<div class="line"><a name="l00617"></a><span class="lineno"> 617</span>&#160; <span class="comment">// we&#39;re done to maximize free space</span></div>
<div class="line"><a name="l00618"></a><span class="lineno"> 618</span>&#160; {</div>
<div class="line"><a name="l00619"></a><span class="lineno"> 619</span>&#160; <span class="keyword">auto</span> querySubQuantizerView = queries.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a3095eaec5711fe697c16c21598a8ddc1">view</a>&lt;3&gt;(</div>
<div class="line"><a name="l00620"></a><span class="lineno"> 620</span>&#160; {queries.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">getSize</a>(0), numSubQuantizers_, dimPerSubQuantizer_});</div>
<div class="line"><a name="l00621"></a><span class="lineno"> 621</span>&#160; DeviceTensor&lt;float, 3, true&gt; queriesTransposed(</div>
<div class="line"><a name="l00622"></a><span class="lineno"> 622</span>&#160; mem,</div>
<div class="line"><a name="l00623"></a><span class="lineno"> 623</span>&#160; {numSubQuantizers_, queries.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">getSize</a>(0), dimPerSubQuantizer_},</div>
<div class="line"><a name="l00624"></a><span class="lineno"> 624</span>&#160; stream);</div>
<div class="line"><a name="l00625"></a><span class="lineno"> 625</span>&#160; runTransposeAny(querySubQuantizerView, 0, 1, queriesTransposed, stream);</div>
<div class="line"><a name="l00626"></a><span class="lineno"> 626</span>&#160;</div>
<div class="line"><a name="l00627"></a><span class="lineno"> 627</span>&#160; DeviceTensor&lt;float, 3, true&gt; term3(</div>
<div class="line"><a name="l00628"></a><span class="lineno"> 628</span>&#160; mem,</div>
<div class="line"><a name="l00629"></a><span class="lineno"> 629</span>&#160; {numSubQuantizers_, queries.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">getSize</a>(0), numSubQuantizerCodes_},</div>
<div class="line"><a name="l00630"></a><span class="lineno"> 630</span>&#160; stream);</div>
<div class="line"><a name="l00631"></a><span class="lineno"> 631</span>&#160;</div>
<div class="line"><a name="l00632"></a><span class="lineno"> 632</span>&#160; runIteratedMatrixMult(term3, <span class="keyword">false</span>,</div>
<div class="line"><a name="l00633"></a><span class="lineno"> 633</span>&#160; queriesTransposed, <span class="keyword">false</span>,</div>
<div class="line"><a name="l00634"></a><span class="lineno"> 634</span>&#160; pqCentroidsMiddleCode_, <span class="keyword">true</span>,</div>
<div class="line"><a name="l00635"></a><span class="lineno"> 635</span>&#160; -2.0f, 0.0f,</div>
<div class="line"><a name="l00636"></a><span class="lineno"> 636</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;getBlasHandleCurrentDevice(),</div>
<div class="line"><a name="l00637"></a><span class="lineno"> 637</span>&#160; stream);</div>
<div class="line"><a name="l00638"></a><span class="lineno"> 638</span>&#160;</div>
<div class="line"><a name="l00639"></a><span class="lineno"> 639</span>&#160; runTransposeAny(term3, 0, 1, term3Transposed, stream);</div>
<div class="line"><a name="l00640"></a><span class="lineno"> 640</span>&#160; }</div>
<div class="line"><a name="l00641"></a><span class="lineno"> 641</span>&#160;</div>
<div class="line"><a name="l00642"></a><span class="lineno"> 642</span>&#160; NoTypeTensor&lt;3, true&gt; term2;</div>
<div class="line"><a name="l00643"></a><span class="lineno"> 643</span>&#160; NoTypeTensor&lt;3, true&gt; term3;</div>
<div class="line"><a name="l00644"></a><span class="lineno"> 644</span>&#160;<span class="preprocessor">#ifdef FAISS_USE_FLOAT16</span></div>
<div class="line"><a name="l00645"></a><span class="lineno"> 645</span>&#160;<span class="preprocessor"></span> DeviceTensor&lt;half, 3, true&gt; term3Half;</div>
<div class="line"><a name="l00646"></a><span class="lineno"> 646</span>&#160;</div>
<div class="line"><a name="l00647"></a><span class="lineno"> 647</span>&#160; <span class="keywordflow">if</span> (useFloat16LookupTables_) {</div>
<div class="line"><a name="l00648"></a><span class="lineno"> 648</span>&#160; term3Half = toHalf(<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>, stream, term3Transposed);</div>
<div class="line"><a name="l00649"></a><span class="lineno"> 649</span>&#160; term2 = NoTypeTensor&lt;3, true&gt;(precomputedCodeHalf_);</div>
<div class="line"><a name="l00650"></a><span class="lineno"> 650</span>&#160; term3 = NoTypeTensor&lt;3, true&gt;(term3Half);</div>
<div class="line"><a name="l00651"></a><span class="lineno"> 651</span>&#160; }</div>
<div class="line"><a name="l00652"></a><span class="lineno"> 652</span>&#160;<span class="preprocessor">#endif</span></div>
<div class="line"><a name="l00653"></a><span class="lineno"> 653</span>&#160;<span class="preprocessor"></span></div>
<div class="line"><a name="l00654"></a><span class="lineno"> 654</span>&#160; <span class="keywordflow">if</span> (!useFloat16LookupTables_) {</div>
<div class="line"><a name="l00655"></a><span class="lineno"> 655</span>&#160; term2 = NoTypeTensor&lt;3, true&gt;(precomputedCode_);</div>
<div class="line"><a name="l00656"></a><span class="lineno"> 656</span>&#160; term3 = NoTypeTensor&lt;3, true&gt;(term3Transposed);</div>
<div class="line"><a name="l00657"></a><span class="lineno"> 657</span>&#160; }</div>
<div class="line"><a name="l00658"></a><span class="lineno"> 658</span>&#160;</div>
<div class="line"><a name="l00659"></a><span class="lineno"> 659</span>&#160; runPQScanMultiPassPrecomputed(queries,</div>
<div class="line"><a name="l00660"></a><span class="lineno"> 660</span>&#160; coarseDistances, <span class="comment">// term 1</span></div>
<div class="line"><a name="l00661"></a><span class="lineno"> 661</span>&#160; term2, <span class="comment">// term 2</span></div>
<div class="line"><a name="l00662"></a><span class="lineno"> 662</span>&#160; term3, <span class="comment">// term 3</span></div>
<div class="line"><a name="l00663"></a><span class="lineno"> 663</span>&#160; coarseIndices,</div>
<div class="line"><a name="l00664"></a><span class="lineno"> 664</span>&#160; useFloat16LookupTables_,</div>
<div class="line"><a name="l00665"></a><span class="lineno"> 665</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a319568b832518392fed33ea4f8bfc613">bytesPerVector_</a>,</div>
<div class="line"><a name="l00666"></a><span class="lineno"> 666</span>&#160; numSubQuantizers_,</div>
<div class="line"><a name="l00667"></a><span class="lineno"> 667</span>&#160; numSubQuantizerCodes_,</div>
<div class="line"><a name="l00668"></a><span class="lineno"> 668</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a96240a08b42bd1913e2286d7d514fc56">deviceListDataPointers_</a>,</div>
<div class="line"><a name="l00669"></a><span class="lineno"> 669</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a9aedcf0e6a20b908980ae96d73461f4c">deviceListIndexPointers_</a>,</div>
<div class="line"><a name="l00670"></a><span class="lineno"> 670</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#afb6d10e23d6448c10f472b9234e0bcab">indicesOptions_</a>,</div>
<div class="line"><a name="l00671"></a><span class="lineno"> 671</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a3a1c2031a4763f7d55bc8a400c63af66">deviceListLengths_</a>,</div>
<div class="line"><a name="l00672"></a><span class="lineno"> 672</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#ae25ea0901fb628844868413f51c85bda">maxListLength_</a>,</div>
<div class="line"><a name="l00673"></a><span class="lineno"> 673</span>&#160; k,</div>
<div class="line"><a name="l00674"></a><span class="lineno"> 674</span>&#160; outDistances,</div>
<div class="line"><a name="l00675"></a><span class="lineno"> 675</span>&#160; outIndices,</div>
<div class="line"><a name="l00676"></a><span class="lineno"> 676</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>);</div>
<div class="line"><a name="l00677"></a><span class="lineno"> 677</span>&#160;}</div>
<div class="line"><a name="l00678"></a><span class="lineno"> 678</span>&#160;</div>
<div class="line"><a name="l00679"></a><span class="lineno"> 679</span>&#160;<span class="keywordtype">void</span></div>
<div class="line"><a name="l00680"></a><span class="lineno"> 680</span>&#160;IVFPQ::runPQNoPrecomputedCodes_(</div>
<div class="line"><a name="l00681"></a><span class="lineno"> 681</span>&#160; Tensor&lt;float, 2, true&gt;&amp; queries,</div>
<div class="line"><a name="l00682"></a><span class="lineno"> 682</span>&#160; DeviceTensor&lt;float, 2, true&gt;&amp; coarseDistances,</div>
<div class="line"><a name="l00683"></a><span class="lineno"> 683</span>&#160; DeviceTensor&lt;int, 2, true&gt;&amp; coarseIndices,</div>
<div class="line"><a name="l00684"></a><span class="lineno"> 684</span>&#160; <span class="keywordtype">int</span> k,</div>
<div class="line"><a name="l00685"></a><span class="lineno"> 685</span>&#160; Tensor&lt;float, 2, true&gt;&amp; outDistances,</div>
<div class="line"><a name="l00686"></a><span class="lineno"> 686</span>&#160; Tensor&lt;long, 2, true&gt;&amp; outIndices) {</div>
<div class="line"><a name="l00687"></a><span class="lineno"> 687</span>&#160; FAISS_ASSERT(!<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a878114abdba07c9cf7735f9c0ed594c3">quantizer_</a>-&gt;getUseFloat16());</div>
<div class="line"><a name="l00688"></a><span class="lineno"> 688</span>&#160; <span class="keyword">auto</span>&amp; coarseCentroids = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a878114abdba07c9cf7735f9c0ed594c3">quantizer_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1FlatIndex.html#a12058744ffb3fbcbb047872449269c06">getVectorsFloat32Ref</a>();</div>
<div class="line"><a name="l00689"></a><span class="lineno"> 689</span>&#160;</div>
<div class="line"><a name="l00690"></a><span class="lineno"> 690</span>&#160; runPQScanMultiPassNoPrecomputed(queries,</div>
<div class="line"><a name="l00691"></a><span class="lineno"> 691</span>&#160; coarseCentroids,</div>
<div class="line"><a name="l00692"></a><span class="lineno"> 692</span>&#160; pqCentroidsInnermostCode_,</div>
<div class="line"><a name="l00693"></a><span class="lineno"> 693</span>&#160; coarseIndices,</div>
<div class="line"><a name="l00694"></a><span class="lineno"> 694</span>&#160; useFloat16LookupTables_,</div>
<div class="line"><a name="l00695"></a><span class="lineno"> 695</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a319568b832518392fed33ea4f8bfc613">bytesPerVector_</a>,</div>
<div class="line"><a name="l00696"></a><span class="lineno"> 696</span>&#160; numSubQuantizers_,</div>
<div class="line"><a name="l00697"></a><span class="lineno"> 697</span>&#160; numSubQuantizerCodes_,</div>
<div class="line"><a name="l00698"></a><span class="lineno"> 698</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a96240a08b42bd1913e2286d7d514fc56">deviceListDataPointers_</a>,</div>
<div class="line"><a name="l00699"></a><span class="lineno"> 699</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a9aedcf0e6a20b908980ae96d73461f4c">deviceListIndexPointers_</a>,</div>
<div class="line"><a name="l00700"></a><span class="lineno"> 700</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#afb6d10e23d6448c10f472b9234e0bcab">indicesOptions_</a>,</div>
<div class="line"><a name="l00701"></a><span class="lineno"> 701</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a3a1c2031a4763f7d55bc8a400c63af66">deviceListLengths_</a>,</div>
<div class="line"><a name="l00702"></a><span class="lineno"> 702</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#ae25ea0901fb628844868413f51c85bda">maxListLength_</a>,</div>
<div class="line"><a name="l00703"></a><span class="lineno"> 703</span>&#160; k,</div>
<div class="line"><a name="l00704"></a><span class="lineno"> 704</span>&#160; outDistances,</div>
<div class="line"><a name="l00705"></a><span class="lineno"> 705</span>&#160; outIndices,</div>
<div class="line"><a name="l00706"></a><span class="lineno"> 706</span>&#160; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>);</div>
<div class="line"><a name="l00707"></a><span class="lineno"> 707</span>&#160;}</div>
<div class="line"><a name="l00708"></a><span class="lineno"> 708</span>&#160;</div>
<div class="line"><a name="l00709"></a><span class="lineno"> 709</span>&#160;} } <span class="comment">// namespace</span></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_accc4d96c14643e5f471220cb1e92ac70"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#accc4d96c14643e5f471220cb1e92ac70">faiss::gpu::IVFBase::numLists_</a></div><div class="ttdeci">const int numLists_</div><div class="ttdoc">Number of inverted lists we maintain. </div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00090">IVFBase.cuh:90</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_ae25ea0901fb628844868413f51c85bda"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#ae25ea0901fb628844868413f51c85bda">faiss::gpu::IVFBase::maxListLength_</a></div><div class="ttdeci">int maxListLength_</div><div class="ttdoc">Maximum list length seen. </div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00111">IVFBase.cuh:111</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFPQ_html_a9992b38226dc8f92ca2691582fabb675"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFPQ.html#a9992b38226dc8f92ca2691582fabb675">faiss::gpu::IVFPQ::addCodeVectorsFromCpu</a></div><div class="ttdeci">void addCodeVectorsFromCpu(int listId, const void *codes, const long *indices, size_t numVecs)</div><div class="ttdef"><b>Definition:</b> <a href="IVFPQ_8cu_source.html#l00347">IVFPQ.cu:347</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1FlatIndex_html_a6988df17792dae30f24cc859728777e6"><div class="ttname"><a href="classfaiss_1_1gpu_1_1FlatIndex.html#a6988df17792dae30f24cc859728777e6">faiss::gpu::FlatIndex::getSize</a></div><div class="ttdeci">int getSize() const </div><div class="ttdoc">Returns the number of vectors we contain. </div><div class="ttdef"><b>Definition:</b> <a href="FlatIndex_8cu_source.html#l00040">FlatIndex.cu:40</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_a53f3c382a79b7f89630a85dfbc3a1fed"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#a53f3c382a79b7f89630a85dfbc3a1fed">faiss::gpu::IVFBase::listOffsetToUserIndex_</a></div><div class="ttdeci">std::vector&lt; std::vector&lt; long &gt; &gt; listOffsetToUserIndex_</div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00123">IVFBase.cuh:123</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1FlatIndex_html"><div class="ttname"><a href="classfaiss_1_1gpu_1_1FlatIndex.html">faiss::gpu::FlatIndex</a></div><div class="ttdoc">Holder of GPU resources for a particular flat index. </div><div class="ttdef"><b>Definition:</b> <a href="FlatIndex_8cuh_source.html#l00023">FlatIndex.cuh:23</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a37d3ac0dffcaad29f09d6e85fb07b335"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a37d3ac0dffcaad29f09d6e85fb07b335">faiss::gpu::Tensor::data</a></div><div class="ttdeci">__host__ __device__ DataPtrType data()</div><div class="ttdoc">Returns a raw pointer to the start of our data. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00162">Tensor.cuh:162</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html">faiss::gpu::IVFBase</a></div><div class="ttdoc">Base inverted list functionality for IVFFlat and IVFPQ. </div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00027">IVFBase.cuh:27</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1GpuResources_html"><div class="ttname"><a href="classfaiss_1_1gpu_1_1GpuResources.html">faiss::gpu::GpuResources</a></div><div class="ttdef"><b>Definition:</b> <a href="GpuResources_8h_source.html#l00024">GpuResources.h:24</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFPQ_html_acdcc64f9b72e661d39528d5d67e54536"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFPQ.html#acdcc64f9b72e661d39528d5d67e54536">faiss::gpu::IVFPQ::IVFPQ</a></div><div class="ttdeci">IVFPQ(GpuResources *resources, FlatIndex *quantizer, int numSubQuantizers, int bitsPerSubQuantizer, float *pqCentroidData, IndicesOptions indicesOptions, bool useFloat16LookupTables)</div><div class="ttdef"><b>Definition:</b> <a href="IVFPQ_8cu_source.html#l00036">IVFPQ.cu:36</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_a3a1c2031a4763f7d55bc8a400c63af66"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#a3a1c2031a4763f7d55bc8a400c63af66">faiss::gpu::IVFBase::deviceListLengths_</a></div><div class="ttdeci">thrust::device_vector&lt; int &gt; deviceListLengths_</div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00108">IVFBase.cuh:108</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFPQ_html_adb58eeacdceb0e0fde1820ca7f116e05"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFPQ.html#adb58eeacdceb0e0fde1820ca7f116e05">faiss::gpu::IVFPQ::isSupportedPQCodeLength</a></div><div class="ttdeci">static bool isSupportedPQCodeLength(int size)</div><div class="ttdoc">Returns true if we support PQ in this size. </div><div class="ttdef"><b>Definition:</b> <a href="IVFPQ_8cu_source.html#l00071">IVFPQ.cu:71</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_a9aedcf0e6a20b908980ae96d73461f4c"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#a9aedcf0e6a20b908980ae96d73461f4c">faiss::gpu::IVFBase::deviceListIndexPointers_</a></div><div class="ttdeci">thrust::device_vector&lt; void * &gt; deviceListIndexPointers_</div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00104">IVFBase.cuh:104</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFPQ_html_ab1e07b04b25569cc58c5f3f033f4dab3"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFPQ.html#ab1e07b04b25569cc58c5f3f033f4dab3">faiss::gpu::IVFPQ::classifyAndAddVectors</a></div><div class="ttdeci">int classifyAndAddVectors(Tensor&lt; float, 2, true &gt; &amp;vecs, Tensor&lt; long, 1, true &gt; &amp;indices)</div><div class="ttdef"><b>Definition:</b> <a href="IVFPQ_8cu_source.html#l00119">IVFPQ.cu:119</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFPQ_html_ab0c458aab9a3d903f31b0e63ce16e623"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFPQ.html#ab0c458aab9a3d903f31b0e63ce16e623">faiss::gpu::IVFPQ::query</a></div><div class="ttdeci">void query(Tensor&lt; float, 2, true &gt; &amp;queries, int nprobe, int k, Tensor&lt; float, 2, true &gt; &amp;outDistances, Tensor&lt; long, 2, true &gt; &amp;outIndices)</div><div class="ttdef"><b>Definition:</b> <a href="IVFPQ_8cu_source.html#l00517">IVFPQ.cu:517</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFPQ_html_a3e8bff50f894c243c62e832f923e88e7"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFPQ.html#a3e8bff50f894c243c62e832f923e88e7">faiss::gpu::IVFPQ::getPQCentroids</a></div><div class="ttdeci">Tensor&lt; float, 3, true &gt; getPQCentroids()</div><div class="ttdef"><b>Definition:</b> <a href="IVFPQ_8cu_source.html#l00592">IVFPQ.cu:592</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_a878114abdba07c9cf7735f9c0ed594c3"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#a878114abdba07c9cf7735f9c0ed594c3">faiss::gpu::IVFBase::quantizer_</a></div><div class="ttdeci">FlatIndex * quantizer_</div><div class="ttdoc">Quantizer object. </div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00084">IVFBase.cuh:84</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFPQ_html_adcee5dbf48c3cb6b8a67f5f392e155fd"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFPQ.html#adcee5dbf48c3cb6b8a67f5f392e155fd">faiss::gpu::IVFPQ::setPrecomputedCodes</a></div><div class="ttdeci">void setPrecomputedCodes(bool enable)</div><div class="ttdoc">Enable or disable pre-computed codes. </div><div class="ttdef"><b>Definition:</b> <a href="IVFPQ_8cu_source.html#l00101">IVFPQ.cu:101</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFPQ_html_a5b349dd021b11b5f48531825359b0657"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFPQ.html#a5b349dd021b11b5f48531825359b0657">faiss::gpu::IVFPQ::getListCodes</a></div><div class="ttdeci">std::vector&lt; unsigned char &gt; getListCodes(int listId) const </div><div class="ttdoc">Return the list codes of a particular list back to the CPU. </div><div class="ttdef"><b>Definition:</b> <a href="IVFPQ_8cu_source.html#l00584">IVFPQ.cu:584</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_a96240a08b42bd1913e2286d7d514fc56"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#a96240a08b42bd1913e2286d7d514fc56">faiss::gpu::IVFBase::deviceListDataPointers_</a></div><div class="ttdeci">thrust::device_vector&lt; void * &gt; deviceListDataPointers_</div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00100">IVFBase.cuh:100</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_a05e6400358ec1f529a67209d3f24cc63"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">faiss::gpu::IVFBase::resources_</a></div><div class="ttdeci">GpuResources * resources_</div><div class="ttdoc">Collection of GPU resources that we use. </div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00081">IVFBase.cuh:81</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html">faiss::gpu::Tensor</a></div><div class="ttdoc">Our tensor type. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00031">Tensor.cuh:31</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a3095eaec5711fe697c16c21598a8ddc1"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a3095eaec5711fe697c16c21598a8ddc1">faiss::gpu::Tensor::view</a></div><div class="ttdeci">__host__ __device__ Tensor&lt; T, SubDim, Contig, IndexT, PtrTraits &gt; view(DataPtrType at)</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00526">Tensor-inl.cuh:526</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_a319568b832518392fed33ea4f8bfc613"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#a319568b832518392fed33ea4f8bfc613">faiss::gpu::IVFBase::bytesPerVector_</a></div><div class="ttdeci">const int bytesPerVector_</div><div class="ttdoc">Number of bytes per vector in the list. </div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00093">IVFBase.cuh:93</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_acc695610c9513952b8d234dc0db78e5c"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#acc695610c9513952b8d234dc0db78e5c">faiss::gpu::IVFBase::updateDeviceListInfo_</a></div><div class="ttdeci">void updateDeviceListInfo_(cudaStream_t stream)</div><div class="ttdoc">Update all device-side list pointer and size information. </div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cu_source.html#l00137">IVFBase.cu:137</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a2d276c97faf432cdc9f3552da63c0d3c"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a2d276c97faf432cdc9f3552da63c0d3c">faiss::gpu::Tensor::getSize</a></div><div class="ttdeci">__host__ __device__ IndexT getSize(int i) const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00210">Tensor.cuh:210</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_ae981a94263044f38be89d690dd958426"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#ae981a94263044f38be89d690dd958426">faiss::gpu::Tensor::copyFrom</a></div><div class="ttdeci">__host__ void copyFrom(Tensor&lt; T, Dim, Contig, IndexT, PtrTraits &gt; &amp;t, cudaStream_t stream)</div><div class="ttdoc">Copies a tensor into ourselves; sizes must match. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00101">Tensor-inl.cuh:101</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1FlatIndex_html_a12058744ffb3fbcbb047872449269c06"><div class="ttname"><a href="classfaiss_1_1gpu_1_1FlatIndex.html#a12058744ffb3fbcbb047872449269c06">faiss::gpu::FlatIndex::getVectorsFloat32Ref</a></div><div class="ttdeci">Tensor&lt; float, 2, true &gt; &amp; getVectorsFloat32Ref()</div><div class="ttdoc">Returns a reference to our vectors currently in use. </div><div class="ttdef"><b>Definition:</b> <a href="FlatIndex_8cu_source.html#l00061">FlatIndex.cu:61</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_afb6d10e23d6448c10f472b9234e0bcab"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#afb6d10e23d6448c10f472b9234e0bcab">faiss::gpu::IVFBase::indicesOptions_</a></div><div class="ttdeci">const IndicesOptions indicesOptions_</div><div class="ttdoc">How are user indices stored on the GPU? </div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00096">IVFBase.cuh:96</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1HostTensor_html"><div class="ttname"><a href="classfaiss_1_1gpu_1_1HostTensor.html">faiss::gpu::HostTensor</a></div><div class="ttdef"><b>Definition:</b> <a href="HostTensor_8cuh_source.html#l00023">HostTensor.cuh:23</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_a2facc7285107de1f24d3471cbcf15f26"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#a2facc7285107de1f24d3471cbcf15f26">faiss::gpu::IVFBase::deviceListData_</a></div><div class="ttdeci">std::vector&lt; std::unique_ptr&lt; DeviceVector&lt; unsigned char &gt; &gt; &gt; deviceListData_</div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00117">IVFBase.cuh:117</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1DeviceTensor_html"><div class="ttname"><a href="classfaiss_1_1gpu_1_1DeviceTensor.html">faiss::gpu::DeviceTensor&lt; float, 3, true &gt;</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_aba3e3cfa469e5187f2d553fff10e0250"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#aba3e3cfa469e5187f2d553fff10e0250">faiss::gpu::IVFBase::dim_</a></div><div class="ttdeci">const int dim_</div><div class="ttdoc">Expected dimensionality of the vectors. </div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00087">IVFBase.cuh:87</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_a5027720549de98f4e609d6339099df35"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#a5027720549de98f4e609d6339099df35">faiss::gpu::IVFBase::addIndicesFromCpu_</a></div><div class="ttdeci">void addIndicesFromCpu_(int listId, const long *indices, size_t numVecs)</div><div class="ttdoc">Shared function to copy indices from CPU to GPU. </div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cu_source.html#l00244">IVFBase.cu:244</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFPQ_html_a0eedf0295ad73125ee1254173a176674"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFPQ.html#a0eedf0295ad73125ee1254173a176674">faiss::gpu::IVFPQ::isSupportedNoPrecomputedSubDimSize</a></div><div class="ttdeci">static bool isSupportedNoPrecomputedSubDimSize(int dims)</div><div class="ttdef"><b>Definition:</b> <a href="IVFPQ_8cu_source.html#l00096">IVFPQ.cu:96</a></div></div>
</div><!-- fragment --></div><!-- contents -->
<!-- start footer part -->
<hr class="footer"/><address class="footer"><small>
Generated by &#160;<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/>
</a> 1.8.5
</small></address>
</body>
</html>