faiss/faiss/VectorTransform.cpp
Matthijs Douze 6800ebef83 Support independent IVF coarse quantizer
Summary: In the IndexIVFIndepenentQuantizer, the coarse quantizer is applied on the input vectors, but the encoding is performed on a vector-transformed version of the database elements.

Reviewed By: alexanderguzhva

Differential Revision: D45950970

fbshipit-source-id: 30f6cf46d44174b1d99a12384b7d5e2d475c1f88
2023-05-26 02:59:01 -07:00

1366 lines
37 KiB
C++

/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include <faiss/VectorTransform.h>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <memory>
#include <faiss/IndexPQ.h>
#include <faiss/impl/FaissAssert.h>
#include <faiss/utils/distances.h>
#include <faiss/utils/random.h>
#include <faiss/utils/utils.h>
using namespace faiss;
extern "C" {
// this is to keep the clang syntax checker happy
#ifndef FINTEGER
#define FINTEGER int
#endif
/* declare BLAS functions, see http://www.netlib.org/clapack/cblas/ */
int sgemm_(
const char* transa,
const char* transb,
FINTEGER* m,
FINTEGER* n,
FINTEGER* k,
const float* alpha,
const float* a,
FINTEGER* lda,
const float* b,
FINTEGER* ldb,
float* beta,
float* c,
FINTEGER* ldc);
int dgemm_(
const char* transa,
const char* transb,
FINTEGER* m,
FINTEGER* n,
FINTEGER* k,
const double* alpha,
const double* a,
FINTEGER* lda,
const double* b,
FINTEGER* ldb,
double* beta,
double* c,
FINTEGER* ldc);
int ssyrk_(
const char* uplo,
const char* trans,
FINTEGER* n,
FINTEGER* k,
float* alpha,
float* a,
FINTEGER* lda,
float* beta,
float* c,
FINTEGER* ldc);
/* Lapack functions from http://www.netlib.org/clapack/old/single/ */
int ssyev_(
const char* jobz,
const char* uplo,
FINTEGER* n,
float* a,
FINTEGER* lda,
float* w,
float* work,
FINTEGER* lwork,
FINTEGER* info);
int dsyev_(
const char* jobz,
const char* uplo,
FINTEGER* n,
double* a,
FINTEGER* lda,
double* w,
double* work,
FINTEGER* lwork,
FINTEGER* info);
int sgesvd_(
const char* jobu,
const char* jobvt,
FINTEGER* m,
FINTEGER* n,
float* a,
FINTEGER* lda,
float* s,
float* u,
FINTEGER* ldu,
float* vt,
FINTEGER* ldvt,
float* work,
FINTEGER* lwork,
FINTEGER* info);
int dgesvd_(
const char* jobu,
const char* jobvt,
FINTEGER* m,
FINTEGER* n,
double* a,
FINTEGER* lda,
double* s,
double* u,
FINTEGER* ldu,
double* vt,
FINTEGER* ldvt,
double* work,
FINTEGER* lwork,
FINTEGER* info);
}
/*********************************************
* VectorTransform
*********************************************/
float* VectorTransform::apply(idx_t n, const float* x) const {
float* xt = new float[n * d_out];
apply_noalloc(n, x, xt);
return xt;
}
void VectorTransform::train(idx_t, const float*) {
// does nothing by default
}
void VectorTransform::reverse_transform(idx_t, const float*, float*) const {
FAISS_THROW_MSG("reverse transform not implemented");
}
void VectorTransform::check_identical(const VectorTransform& other) const {
FAISS_THROW_IF_NOT(other.d_in == d_in && other.d_in == d_in);
}
/*********************************************
* LinearTransform
*********************************************/
/// both d_in > d_out and d_out < d_in are supported
LinearTransform::LinearTransform(int d_in, int d_out, bool have_bias)
: VectorTransform(d_in, d_out),
have_bias(have_bias),
is_orthonormal(false),
verbose(false) {
is_trained = false; // will be trained when A and b are initialized
}
void LinearTransform::apply_noalloc(idx_t n, const float* x, float* xt) const {
FAISS_THROW_IF_NOT_MSG(is_trained, "Transformation not trained yet");
float c_factor;
if (have_bias) {
FAISS_THROW_IF_NOT_MSG(b.size() == d_out, "Bias not initialized");
float* xi = xt;
for (int i = 0; i < n; i++)
for (int j = 0; j < d_out; j++)
*xi++ = b[j];
c_factor = 1.0;
} else {
c_factor = 0.0;
}
FAISS_THROW_IF_NOT_MSG(
A.size() == d_out * d_in, "Transformation matrix not initialized");
float one = 1;
FINTEGER nbiti = d_out, ni = n, di = d_in;
sgemm_("Transposed",
"Not transposed",
&nbiti,
&ni,
&di,
&one,
A.data(),
&di,
x,
&di,
&c_factor,
xt,
&nbiti);
}
void LinearTransform::transform_transpose(idx_t n, const float* y, float* x)
const {
if (have_bias) { // allocate buffer to store bias-corrected data
float* y_new = new float[n * d_out];
const float* yr = y;
float* yw = y_new;
for (idx_t i = 0; i < n; i++) {
for (int j = 0; j < d_out; j++) {
*yw++ = *yr++ - b[j];
}
}
y = y_new;
}
{
FINTEGER dii = d_in, doi = d_out, ni = n;
float one = 1.0, zero = 0.0;
sgemm_("Not",
"Not",
&dii,
&ni,
&doi,
&one,
A.data(),
&dii,
y,
&doi,
&zero,
x,
&dii);
}
if (have_bias)
delete[] y;
}
void LinearTransform::set_is_orthonormal() {
if (d_out > d_in) {
// not clear what we should do in this case
is_orthonormal = false;
return;
}
if (d_out == 0) { // borderline case, unnormalized matrix
is_orthonormal = true;
return;
}
double eps = 4e-5;
FAISS_ASSERT(A.size() >= d_out * d_in);
{
std::vector<float> ATA(d_out * d_out);
FINTEGER dii = d_in, doi = d_out;
float one = 1.0, zero = 0.0;
sgemm_("Transposed",
"Not",
&doi,
&doi,
&dii,
&one,
A.data(),
&dii,
A.data(),
&dii,
&zero,
ATA.data(),
&doi);
is_orthonormal = true;
for (long i = 0; i < d_out; i++) {
for (long j = 0; j < d_out; j++) {
float v = ATA[i + j * d_out];
if (i == j)
v -= 1;
if (fabs(v) > eps) {
is_orthonormal = false;
}
}
}
}
}
void LinearTransform::reverse_transform(idx_t n, const float* xt, float* x)
const {
if (is_orthonormal) {
transform_transpose(n, xt, x);
} else {
FAISS_THROW_MSG(
"reverse transform not implemented for non-orthonormal matrices");
}
}
void LinearTransform::print_if_verbose(
const char* name,
const std::vector<double>& mat,
int n,
int d) const {
if (!verbose)
return;
printf("matrix %s: %d*%d [\n", name, n, d);
FAISS_THROW_IF_NOT(mat.size() >= n * d);
for (int i = 0; i < n; i++) {
for (int j = 0; j < d; j++) {
printf("%10.5g ", mat[i * d + j]);
}
printf("\n");
}
printf("]\n");
}
void LinearTransform::check_identical(const VectorTransform& other_in) const {
VectorTransform::check_identical(other_in);
auto other = dynamic_cast<const LinearTransform*>(&other_in);
FAISS_THROW_IF_NOT(other);
FAISS_THROW_IF_NOT(other->A == A && other->b == b);
}
/*********************************************
* RandomRotationMatrix
*********************************************/
void RandomRotationMatrix::init(int seed) {
if (d_out <= d_in) {
A.resize(d_out * d_in);
float* q = A.data();
float_randn(q, d_out * d_in, seed);
matrix_qr(d_in, d_out, q);
} else {
// use tight-frame transformation
A.resize(d_out * d_out);
float* q = A.data();
float_randn(q, d_out * d_out, seed);
matrix_qr(d_out, d_out, q);
// remove columns
int i, j;
for (i = 0; i < d_out; i++) {
for (j = 0; j < d_in; j++) {
q[i * d_in + j] = q[i * d_out + j];
}
}
A.resize(d_in * d_out);
}
is_orthonormal = true;
is_trained = true;
}
void RandomRotationMatrix::train(idx_t /*n*/, const float* /*x*/) {
// initialize with some arbitrary seed
init(12345);
}
/*********************************************
* PCAMatrix
*********************************************/
PCAMatrix::PCAMatrix(
int d_in,
int d_out,
float eigen_power,
bool random_rotation)
: LinearTransform(d_in, d_out, true),
eigen_power(eigen_power),
random_rotation(random_rotation) {
is_trained = false;
max_points_per_d = 1000;
balanced_bins = 0;
epsilon = 0;
}
namespace {
/// Compute the eigenvalue decomposition of symmetric matrix cov,
/// dimensions d_in-by-d_in. Output eigenvectors in cov.
void eig(size_t d_in, double* cov, double* eigenvalues, int verbose) {
{ // compute eigenvalues and vectors
FINTEGER info = 0, lwork = -1, di = d_in;
double workq;
dsyev_("Vectors as well",
"Upper",
&di,
cov,
&di,
eigenvalues,
&workq,
&lwork,
&info);
lwork = FINTEGER(workq);
double* work = new double[lwork];
dsyev_("Vectors as well",
"Upper",
&di,
cov,
&di,
eigenvalues,
work,
&lwork,
&info);
delete[] work;
if (info != 0) {
fprintf(stderr,
"WARN ssyev info returns %d, "
"a very bad PCA matrix is learnt\n",
int(info));
// do not throw exception, as the matrix could still be useful
}
if (verbose && d_in <= 10) {
printf("info=%ld new eigvals=[", long(info));
for (int j = 0; j < d_in; j++)
printf("%g ", eigenvalues[j]);
printf("]\n");
double* ci = cov;
printf("eigenvecs=\n");
for (int i = 0; i < d_in; i++) {
for (int j = 0; j < d_in; j++)
printf("%10.4g ", *ci++);
printf("\n");
}
}
}
// revert order of eigenvectors & values
for (int i = 0; i < d_in / 2; i++) {
std::swap(eigenvalues[i], eigenvalues[d_in - 1 - i]);
double* v1 = cov + i * d_in;
double* v2 = cov + (d_in - 1 - i) * d_in;
for (int j = 0; j < d_in; j++)
std::swap(v1[j], v2[j]);
}
}
} // namespace
void PCAMatrix::train(idx_t n, const float* x_in) {
const float* x = fvecs_maybe_subsample(
d_in, (size_t*)&n, max_points_per_d * d_in, x_in, verbose);
TransformedVectors tv(x_in, x);
// compute mean
mean.clear();
mean.resize(d_in, 0.0);
if (have_bias) { // we may want to skip the bias
const float* xi = x;
for (int i = 0; i < n; i++) {
for (int j = 0; j < d_in; j++)
mean[j] += *xi++;
}
for (int j = 0; j < d_in; j++)
mean[j] /= n;
}
if (verbose) {
printf("mean=[");
for (int j = 0; j < d_in; j++)
printf("%g ", mean[j]);
printf("]\n");
}
if (n >= d_in) {
// compute covariance matrix, store it in PCA matrix
PCAMat.resize(d_in * d_in);
float* cov = PCAMat.data();
{ // initialize with mean * mean^T term
float* ci = cov;
for (int i = 0; i < d_in; i++) {
for (int j = 0; j < d_in; j++)
*ci++ = -n * mean[i] * mean[j];
}
}
{
FINTEGER di = d_in, ni = n;
float one = 1.0;
ssyrk_("Up",
"Non transposed",
&di,
&ni,
&one,
(float*)x,
&di,
&one,
cov,
&di);
}
if (verbose && d_in <= 10) {
float* ci = cov;
printf("cov=\n");
for (int i = 0; i < d_in; i++) {
for (int j = 0; j < d_in; j++)
printf("%10g ", *ci++);
printf("\n");
}
}
std::vector<double> covd(d_in * d_in);
for (size_t i = 0; i < d_in * d_in; i++)
covd[i] = cov[i];
std::vector<double> eigenvaluesd(d_in);
eig(d_in, covd.data(), eigenvaluesd.data(), verbose);
for (size_t i = 0; i < d_in * d_in; i++)
PCAMat[i] = covd[i];
eigenvalues.resize(d_in);
for (size_t i = 0; i < d_in; i++)
eigenvalues[i] = eigenvaluesd[i];
} else {
std::vector<float> xc(n * d_in);
for (size_t i = 0; i < n; i++)
for (size_t j = 0; j < d_in; j++)
xc[i * d_in + j] = x[i * d_in + j] - mean[j];
// compute Gram matrix
std::vector<float> gram(n * n);
{
FINTEGER di = d_in, ni = n;
float one = 1.0, zero = 0.0;
ssyrk_("Up",
"Transposed",
&ni,
&di,
&one,
xc.data(),
&di,
&zero,
gram.data(),
&ni);
}
if (verbose && d_in <= 10) {
float* ci = gram.data();
printf("gram=\n");
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
printf("%10g ", *ci++);
printf("\n");
}
}
std::vector<double> gramd(n * n);
for (size_t i = 0; i < n * n; i++)
gramd[i] = gram[i];
std::vector<double> eigenvaluesd(n);
// eig will fill in only the n first eigenvals
eig(n, gramd.data(), eigenvaluesd.data(), verbose);
PCAMat.resize(d_in * n);
for (size_t i = 0; i < n * n; i++)
gram[i] = gramd[i];
eigenvalues.resize(d_in);
// fill in only the n first ones
for (size_t i = 0; i < n; i++)
eigenvalues[i] = eigenvaluesd[i];
{ // compute PCAMat = x' * v
FINTEGER di = d_in, ni = n;
float one = 1.0;
sgemm_("Non",
"Non Trans",
&di,
&ni,
&ni,
&one,
xc.data(),
&di,
gram.data(),
&ni,
&one,
PCAMat.data(),
&di);
}
if (verbose && d_in <= 10) {
float* ci = PCAMat.data();
printf("PCAMat=\n");
for (int i = 0; i < n; i++) {
for (int j = 0; j < d_in; j++)
printf("%10g ", *ci++);
printf("\n");
}
}
fvec_renorm_L2(d_in, n, PCAMat.data());
}
prepare_Ab();
is_trained = true;
}
void PCAMatrix::copy_from(const PCAMatrix& other) {
FAISS_THROW_IF_NOT(other.is_trained);
mean = other.mean;
eigenvalues = other.eigenvalues;
PCAMat = other.PCAMat;
prepare_Ab();
is_trained = true;
}
void PCAMatrix::prepare_Ab() {
FAISS_THROW_IF_NOT_FMT(
d_out * d_in <= PCAMat.size(),
"PCA matrix cannot output %d dimensions from %d ",
d_out,
d_in);
if (!random_rotation) {
A = PCAMat;
A.resize(d_out * d_in); // strip off useless dimensions
// first scale the components
if (eigen_power != 0) {
float* ai = A.data();
for (int i = 0; i < d_out; i++) {
float factor = pow(eigenvalues[i] + epsilon, eigen_power);
for (int j = 0; j < d_in; j++)
*ai++ *= factor;
}
}
if (balanced_bins != 0) {
FAISS_THROW_IF_NOT(d_out % balanced_bins == 0);
int dsub = d_out / balanced_bins;
std::vector<float> Ain;
std::swap(A, Ain);
A.resize(d_out * d_in);
std::vector<float> accu(balanced_bins);
std::vector<int> counter(balanced_bins);
// greedy assignment
for (int i = 0; i < d_out; i++) {
// find best bin
int best_j = -1;
float min_w = 1e30;
for (int j = 0; j < balanced_bins; j++) {
if (counter[j] < dsub && accu[j] < min_w) {
min_w = accu[j];
best_j = j;
}
}
int row_dst = best_j * dsub + counter[best_j];
accu[best_j] += eigenvalues[i];
counter[best_j]++;
memcpy(&A[row_dst * d_in], &Ain[i * d_in], d_in * sizeof(A[0]));
}
if (verbose) {
printf(" bin accu=[");
for (int i = 0; i < balanced_bins; i++)
printf("%g ", accu[i]);
printf("]\n");
}
}
} else {
FAISS_THROW_IF_NOT_MSG(
balanced_bins == 0,
"both balancing bins and applying a random rotation "
"does not make sense");
RandomRotationMatrix rr(d_out, d_out);
rr.init(5);
// apply scaling on the rotation matrix (right multiplication)
if (eigen_power != 0) {
for (int i = 0; i < d_out; i++) {
float factor = pow(eigenvalues[i], eigen_power);
for (int j = 0; j < d_out; j++)
rr.A[j * d_out + i] *= factor;
}
}
A.resize(d_in * d_out);
{
FINTEGER dii = d_in, doo = d_out;
float one = 1.0, zero = 0.0;
sgemm_("Not",
"Not",
&dii,
&doo,
&doo,
&one,
PCAMat.data(),
&dii,
rr.A.data(),
&doo,
&zero,
A.data(),
&dii);
}
}
b.clear();
b.resize(d_out);
for (int i = 0; i < d_out; i++) {
float accu = 0;
for (int j = 0; j < d_in; j++)
accu -= mean[j] * A[j + i * d_in];
b[i] = accu;
}
is_orthonormal = eigen_power == 0;
}
/*********************************************
* ITQMatrix
*********************************************/
ITQMatrix::ITQMatrix(int d)
: LinearTransform(d, d, false), max_iter(50), seed(123) {}
/** translated from fbcode/deeplearning/catalyzer/catalyzer/quantizers.py */
void ITQMatrix::train(idx_t n, const float* xf) {
size_t d = d_in;
std::vector<double> rotation(d * d);
if (init_rotation.size() == d * d) {
memcpy(rotation.data(),
init_rotation.data(),
d * d * sizeof(rotation[0]));
} else {
RandomRotationMatrix rrot(d, d);
rrot.init(seed);
for (size_t i = 0; i < d * d; i++) {
rotation[i] = rrot.A[i];
}
}
std::vector<double> x(n * d);
for (size_t i = 0; i < n * d; i++) {
x[i] = xf[i];
}
std::vector<double> rotated_x(n * d), cov_mat(d * d);
std::vector<double> u(d * d), vt(d * d), singvals(d);
for (int i = 0; i < max_iter; i++) {
print_if_verbose("rotation", rotation, d, d);
{ // rotated_data = np.dot(training_data, rotation)
FINTEGER di = d, ni = n;
double one = 1, zero = 0;
dgemm_("N",
"N",
&di,
&ni,
&di,
&one,
rotation.data(),
&di,
x.data(),
&di,
&zero,
rotated_x.data(),
&di);
}
print_if_verbose("rotated_x", rotated_x, n, d);
// binarize
for (size_t j = 0; j < n * d; j++) {
rotated_x[j] = rotated_x[j] < 0 ? -1 : 1;
}
// covariance matrix
{ // rotated_data = np.dot(training_data, rotation)
FINTEGER di = d, ni = n;
double one = 1, zero = 0;
dgemm_("N",
"T",
&di,
&di,
&ni,
&one,
rotated_x.data(),
&di,
x.data(),
&di,
&zero,
cov_mat.data(),
&di);
}
print_if_verbose("cov_mat", cov_mat, d, d);
// SVD
{
FINTEGER di = d;
FINTEGER lwork = -1, info;
double lwork1;
// workspace query
dgesvd_("A",
"A",
&di,
&di,
cov_mat.data(),
&di,
singvals.data(),
u.data(),
&di,
vt.data(),
&di,
&lwork1,
&lwork,
&info);
FAISS_THROW_IF_NOT(info == 0);
lwork = size_t(lwork1);
std::vector<double> work(lwork);
dgesvd_("A",
"A",
&di,
&di,
cov_mat.data(),
&di,
singvals.data(),
u.data(),
&di,
vt.data(),
&di,
work.data(),
&lwork,
&info);
FAISS_THROW_IF_NOT_FMT(info == 0, "sgesvd returned info=%d", info);
}
print_if_verbose("u", u, d, d);
print_if_verbose("vt", vt, d, d);
// update rotation
{
FINTEGER di = d;
double one = 1, zero = 0;
dgemm_("N",
"T",
&di,
&di,
&di,
&one,
u.data(),
&di,
vt.data(),
&di,
&zero,
rotation.data(),
&di);
}
print_if_verbose("final rot", rotation, d, d);
}
A.resize(d * d);
for (size_t i = 0; i < d; i++) {
for (size_t j = 0; j < d; j++) {
A[i + d * j] = rotation[j + d * i];
}
}
is_trained = true;
}
ITQTransform::ITQTransform(int d_in, int d_out, bool do_pca)
: VectorTransform(d_in, d_out),
do_pca(do_pca),
itq(d_out),
pca_then_itq(d_in, d_out, false) {
if (!do_pca) {
FAISS_THROW_IF_NOT(d_in == d_out);
}
max_train_per_dim = 10;
is_trained = false;
}
void ITQTransform::train(idx_t n, const float* x_in) {
FAISS_THROW_IF_NOT(!is_trained);
size_t max_train_points = std::max(d_in * max_train_per_dim, 32768);
const float* x =
fvecs_maybe_subsample(d_in, (size_t*)&n, max_train_points, x_in);
TransformedVectors tv(x_in, x);
std::unique_ptr<float[]> x_norm(new float[n * d_in]);
{ // normalize
int d = d_in;
mean.resize(d, 0);
for (idx_t i = 0; i < n; i++) {
for (idx_t j = 0; j < d; j++) {
mean[j] += x[i * d + j];
}
}
for (idx_t j = 0; j < d; j++) {
mean[j] /= n;
}
for (idx_t i = 0; i < n; i++) {
for (idx_t j = 0; j < d; j++) {
x_norm[i * d + j] = x[i * d + j] - mean[j];
}
}
fvec_renorm_L2(d_in, n, x_norm.get());
}
// train PCA
PCAMatrix pca(d_in, d_out);
float* x_pca;
std::unique_ptr<float[]> x_pca_del;
if (do_pca) {
pca.have_bias = false; // for consistency with reference implem
pca.train(n, x_norm.get());
x_pca = pca.apply(n, x_norm.get());
x_pca_del.reset(x_pca);
} else {
x_pca = x_norm.get();
}
// train ITQ
itq.train(n, x_pca);
// merge PCA and ITQ
if (do_pca) {
FINTEGER di = d_out, dini = d_in;
float one = 1, zero = 0;
pca_then_itq.A.resize(d_in * d_out);
sgemm_("N",
"N",
&dini,
&di,
&di,
&one,
pca.A.data(),
&dini,
itq.A.data(),
&di,
&zero,
pca_then_itq.A.data(),
&dini);
} else {
pca_then_itq.A = itq.A;
}
pca_then_itq.is_trained = true;
is_trained = true;
}
void ITQTransform::apply_noalloc(idx_t n, const float* x, float* xt) const {
FAISS_THROW_IF_NOT_MSG(is_trained, "Transformation not trained yet");
std::unique_ptr<float[]> x_norm(new float[n * d_in]);
{ // normalize
int d = d_in;
for (idx_t i = 0; i < n; i++) {
for (idx_t j = 0; j < d; j++) {
x_norm[i * d + j] = x[i * d + j] - mean[j];
}
}
// this is not really useful if we are going to binarize right
// afterwards but OK
fvec_renorm_L2(d_in, n, x_norm.get());
}
pca_then_itq.apply_noalloc(n, x_norm.get(), xt);
}
void ITQTransform::check_identical(const VectorTransform& other_in) const {
VectorTransform::check_identical(other_in);
auto other = dynamic_cast<const ITQTransform*>(&other_in);
FAISS_THROW_IF_NOT(other);
pca_then_itq.check_identical(other->pca_then_itq);
FAISS_THROW_IF_NOT(other->mean == mean);
}
/*********************************************
* OPQMatrix
*********************************************/
OPQMatrix::OPQMatrix(int d, int M, int d2)
: LinearTransform(d, d2 == -1 ? d : d2, false), M(M) {
is_trained = false;
// OPQ is quite expensive to train, so set this right.
max_train_points = 256 * 256;
}
void OPQMatrix::train(idx_t n, const float* x_in) {
const float* x = fvecs_maybe_subsample(
d_in, (size_t*)&n, max_train_points, x_in, verbose);
TransformedVectors tv(x_in, x);
// To support d_out > d_in, we pad input vectors with 0s to d_out
size_t d = d_out <= d_in ? d_in : d_out;
size_t d2 = d_out;
#if 0
// what this test shows: the only way of getting bit-exact
// reproducible results with sgeqrf and sgesvd seems to be forcing
// single-threading.
{ // test repro
std::vector<float> r (d * d);
float * rotation = r.data();
float_randn (rotation, d * d, 1234);
printf("CS0: %016lx\n",
ivec_checksum (128*128, (int*)rotation));
matrix_qr (d, d, rotation);
printf("CS1: %016lx\n",
ivec_checksum (128*128, (int*)rotation));
return;
}
#endif
if (verbose) {
printf("OPQMatrix::train: training an OPQ rotation matrix "
"for M=%d from %" PRId64 " vectors in %dD -> %dD\n",
M,
n,
d_in,
d_out);
}
std::vector<float> xtrain(n * d);
// center x
{
std::vector<float> sum(d);
const float* xi = x;
for (size_t i = 0; i < n; i++) {
for (int j = 0; j < d_in; j++)
sum[j] += *xi++;
}
for (int i = 0; i < d; i++)
sum[i] /= n;
float* yi = xtrain.data();
xi = x;
for (size_t i = 0; i < n; i++) {
for (int j = 0; j < d_in; j++)
*yi++ = *xi++ - sum[j];
yi += d - d_in;
}
}
float* rotation;
if (A.size() == 0) {
A.resize(d * d);
rotation = A.data();
if (verbose)
printf(" OPQMatrix::train: making random %zd*%zd rotation\n",
d,
d);
float_randn(rotation, d * d, 1234);
matrix_qr(d, d, rotation);
// we use only the d * d2 upper part of the matrix
A.resize(d * d2);
} else {
FAISS_THROW_IF_NOT(A.size() == d * d2);
rotation = A.data();
}
std::vector<float> xproj(d2 * n), pq_recons(d2 * n), xxr(d * n),
tmp(d * d * 4);
ProductQuantizer pq_default(d2, M, 8);
ProductQuantizer& pq_regular = pq ? *pq : pq_default;
std::vector<uint8_t> codes(pq_regular.code_size * n);
double t0 = getmillisecs();
for (int iter = 0; iter < niter; iter++) {
{ // torch.mm(xtrain, rotation:t())
FINTEGER di = d, d2i = d2, ni = n;
float zero = 0, one = 1;
sgemm_("Transposed",
"Not transposed",
&d2i,
&ni,
&di,
&one,
rotation,
&di,
xtrain.data(),
&di,
&zero,
xproj.data(),
&d2i);
}
pq_regular.cp.max_points_per_centroid = 1000;
pq_regular.cp.niter = iter == 0 ? niter_pq_0 : niter_pq;
pq_regular.verbose = verbose;
pq_regular.train(n, xproj.data());
if (verbose) {
printf(" encode / decode\n");
}
if (pq_regular.assign_index) {
pq_regular.compute_codes_with_assign_index(
xproj.data(), codes.data(), n);
} else {
pq_regular.compute_codes(xproj.data(), codes.data(), n);
}
pq_regular.decode(codes.data(), pq_recons.data(), n);
float pq_err = fvec_L2sqr(pq_recons.data(), xproj.data(), n * d2) / n;
if (verbose)
printf(" Iteration %d (%d PQ iterations):"
"%.3f s, obj=%g\n",
iter,
pq_regular.cp.niter,
(getmillisecs() - t0) / 1000.0,
pq_err);
{
float *u = tmp.data(), *vt = &tmp[d * d];
float* sing_val = &tmp[2 * d * d];
FINTEGER di = d, d2i = d2, ni = n;
float one = 1, zero = 0;
if (verbose) {
printf(" X * recons\n");
}
// torch.mm(xtrain:t(), pq_recons)
sgemm_("Not",
"Transposed",
&d2i,
&di,
&ni,
&one,
pq_recons.data(),
&d2i,
xtrain.data(),
&di,
&zero,
xxr.data(),
&d2i);
FINTEGER lwork = -1, info = -1;
float worksz;
// workspace query
sgesvd_("All",
"All",
&d2i,
&di,
xxr.data(),
&d2i,
sing_val,
vt,
&d2i,
u,
&di,
&worksz,
&lwork,
&info);
lwork = int(worksz);
std::vector<float> work(lwork);
// u and vt swapped
sgesvd_("All",
"All",
&d2i,
&di,
xxr.data(),
&d2i,
sing_val,
vt,
&d2i,
u,
&di,
work.data(),
&lwork,
&info);
sgemm_("Transposed",
"Transposed",
&di,
&d2i,
&d2i,
&one,
u,
&di,
vt,
&d2i,
&zero,
rotation,
&di);
}
pq_regular.train_type = ProductQuantizer::Train_hot_start;
}
// revert A matrix
if (d > d_in) {
for (long i = 0; i < d_out; i++)
memmove(&A[i * d_in], &A[i * d], sizeof(A[0]) * d_in);
A.resize(d_in * d_out);
}
is_trained = true;
is_orthonormal = true;
}
/*********************************************
* NormalizationTransform
*********************************************/
NormalizationTransform::NormalizationTransform(int d, float norm)
: VectorTransform(d, d), norm(norm) {}
NormalizationTransform::NormalizationTransform()
: VectorTransform(-1, -1), norm(-1) {}
void NormalizationTransform::apply_noalloc(idx_t n, const float* x, float* xt)
const {
if (norm == 2.0) {
memcpy(xt, x, sizeof(x[0]) * n * d_in);
fvec_renorm_L2(d_in, n, xt);
} else {
FAISS_THROW_MSG("not implemented");
}
}
void NormalizationTransform::reverse_transform(
idx_t n,
const float* xt,
float* x) const {
memcpy(x, xt, sizeof(xt[0]) * n * d_in);
}
void NormalizationTransform::check_identical(
const VectorTransform& other_in) const {
VectorTransform::check_identical(other_in);
auto other = dynamic_cast<const NormalizationTransform*>(&other_in);
FAISS_THROW_IF_NOT(other);
FAISS_THROW_IF_NOT(other->norm == norm);
}
/*********************************************
* CenteringTransform
*********************************************/
CenteringTransform::CenteringTransform(int d) : VectorTransform(d, d) {
is_trained = false;
}
void CenteringTransform::train(idx_t n, const float* x) {
FAISS_THROW_IF_NOT_MSG(n > 0, "need at least one training vector");
mean.resize(d_in, 0);
for (idx_t i = 0; i < n; i++) {
for (size_t j = 0; j < d_in; j++) {
mean[j] += *x++;
}
}
for (size_t j = 0; j < d_in; j++) {
mean[j] /= n;
}
is_trained = true;
}
void CenteringTransform::apply_noalloc(idx_t n, const float* x, float* xt)
const {
FAISS_THROW_IF_NOT(is_trained);
for (idx_t i = 0; i < n; i++) {
for (size_t j = 0; j < d_in; j++) {
*xt++ = *x++ - mean[j];
}
}
}
void CenteringTransform::reverse_transform(idx_t n, const float* xt, float* x)
const {
FAISS_THROW_IF_NOT(is_trained);
for (idx_t i = 0; i < n; i++) {
for (size_t j = 0; j < d_in; j++) {
*x++ = *xt++ + mean[j];
}
}
}
void CenteringTransform::check_identical(
const VectorTransform& other_in) const {
VectorTransform::check_identical(other_in);
auto other = dynamic_cast<const CenteringTransform*>(&other_in);
FAISS_THROW_IF_NOT(other);
FAISS_THROW_IF_NOT(other->mean == mean);
}
/*********************************************
* RemapDimensionsTransform
*********************************************/
RemapDimensionsTransform::RemapDimensionsTransform(
int d_in,
int d_out,
const int* map_in)
: VectorTransform(d_in, d_out) {
map.resize(d_out);
for (int i = 0; i < d_out; i++) {
map[i] = map_in[i];
FAISS_THROW_IF_NOT(map[i] == -1 || (map[i] >= 0 && map[i] < d_in));
}
}
RemapDimensionsTransform::RemapDimensionsTransform(
int d_in,
int d_out,
bool uniform)
: VectorTransform(d_in, d_out) {
map.resize(d_out, -1);
if (uniform) {
if (d_in < d_out) {
for (int i = 0; i < d_in; i++) {
map[i * d_out / d_in] = i;
}
} else {
for (int i = 0; i < d_out; i++) {
map[i] = i * d_in / d_out;
}
}
} else {
for (int i = 0; i < d_in && i < d_out; i++)
map[i] = i;
}
}
void RemapDimensionsTransform::apply_noalloc(idx_t n, const float* x, float* xt)
const {
for (idx_t i = 0; i < n; i++) {
for (int j = 0; j < d_out; j++) {
xt[j] = map[j] < 0 ? 0 : x[map[j]];
}
x += d_in;
xt += d_out;
}
}
void RemapDimensionsTransform::reverse_transform(
idx_t n,
const float* xt,
float* x) const {
memset(x, 0, sizeof(*x) * n * d_in);
for (idx_t i = 0; i < n; i++) {
for (int j = 0; j < d_out; j++) {
if (map[j] >= 0)
x[map[j]] = xt[j];
}
x += d_in;
xt += d_out;
}
}
void RemapDimensionsTransform::check_identical(
const VectorTransform& other_in) const {
VectorTransform::check_identical(other_in);
auto other = dynamic_cast<const RemapDimensionsTransform*>(&other_in);
FAISS_THROW_IF_NOT(other);
FAISS_THROW_IF_NOT(other->map == map);
}