faiss/VectorTransform.cpp

1158 lines
32 KiB
C++

/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include <faiss/VectorTransform.h>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <memory>
#include <faiss/utils/distances.h>
#include <faiss/utils/random.h>
#include <faiss/utils/utils.h>
#include <faiss/impl/FaissAssert.h>
#include <faiss/IndexPQ.h>
using namespace faiss;
extern "C" {
// this is to keep the clang syntax checker happy
#ifndef FINTEGER
#define FINTEGER int
#endif
/* declare BLAS functions, see http://www.netlib.org/clapack/cblas/ */
int sgemm_ (
const char *transa, const char *transb, FINTEGER *m, FINTEGER *
n, FINTEGER *k, const float *alpha, const float *a,
FINTEGER *lda, const float *b,
FINTEGER *ldb, float *beta,
float *c, FINTEGER *ldc);
int dgemm_ (
const char *transa, const char *transb, FINTEGER *m, FINTEGER *
n, FINTEGER *k, const double *alpha, const double *a,
FINTEGER *lda, const double *b,
FINTEGER *ldb, double *beta,
double *c, FINTEGER *ldc);
int ssyrk_ (
const char *uplo, const char *trans, FINTEGER *n, FINTEGER *k,
float *alpha, float *a, FINTEGER *lda,
float *beta, float *c, FINTEGER *ldc);
/* Lapack functions from http://www.netlib.org/clapack/old/single/ */
int ssyev_ (
const char *jobz, const char *uplo, FINTEGER *n, float *a,
FINTEGER *lda, float *w, float *work, FINTEGER *lwork,
FINTEGER *info);
int dsyev_ (
const char *jobz, const char *uplo, FINTEGER *n, double *a,
FINTEGER *lda, double *w, double *work, FINTEGER *lwork,
FINTEGER *info);
int sgesvd_(
const char *jobu, const char *jobvt, FINTEGER *m, FINTEGER *n,
float *a, FINTEGER *lda, float *s, float *u, FINTEGER *ldu, float *vt,
FINTEGER *ldvt, float *work, FINTEGER *lwork, FINTEGER *info);
int dgesvd_(
const char *jobu, const char *jobvt, FINTEGER *m, FINTEGER *n,
double *a, FINTEGER *lda, double *s, double *u, FINTEGER *ldu, double *vt,
FINTEGER *ldvt, double *work, FINTEGER *lwork, FINTEGER *info);
}
/*********************************************
* VectorTransform
*********************************************/
float * VectorTransform::apply (Index::idx_t n, const float * x) const
{
float * xt = new float[n * d_out];
apply_noalloc (n, x, xt);
return xt;
}
void VectorTransform::train (idx_t, const float *) {
// does nothing by default
}
void VectorTransform::reverse_transform (
idx_t , const float *,
float *) const
{
FAISS_THROW_MSG ("reverse transform not implemented");
}
/*********************************************
* LinearTransform
*********************************************/
/// both d_in > d_out and d_out < d_in are supported
LinearTransform::LinearTransform (int d_in, int d_out,
bool have_bias):
VectorTransform (d_in, d_out), have_bias (have_bias),
is_orthonormal (false), verbose (false)
{
is_trained = false; // will be trained when A and b are initialized
}
void LinearTransform::apply_noalloc (Index::idx_t n, const float * x,
float * xt) const
{
FAISS_THROW_IF_NOT_MSG(is_trained, "Transformation not trained yet");
float c_factor;
if (have_bias) {
FAISS_THROW_IF_NOT_MSG (b.size() == d_out, "Bias not initialized");
float * xi = xt;
for (int i = 0; i < n; i++)
for(int j = 0; j < d_out; j++)
*xi++ = b[j];
c_factor = 1.0;
} else {
c_factor = 0.0;
}
FAISS_THROW_IF_NOT_MSG (A.size() == d_out * d_in,
"Transformation matrix not initialized");
float one = 1;
FINTEGER nbiti = d_out, ni = n, di = d_in;
sgemm_ ("Transposed", "Not transposed",
&nbiti, &ni, &di,
&one, A.data(), &di, x, &di, &c_factor, xt, &nbiti);
}
void LinearTransform::transform_transpose (idx_t n, const float * y,
float *x) const
{
if (have_bias) { // allocate buffer to store bias-corrected data
float *y_new = new float [n * d_out];
const float *yr = y;
float *yw = y_new;
for (idx_t i = 0; i < n; i++) {
for (int j = 0; j < d_out; j++) {
*yw++ = *yr++ - b [j];
}
}
y = y_new;
}
{
FINTEGER dii = d_in, doi = d_out, ni = n;
float one = 1.0, zero = 0.0;
sgemm_ ("Not", "Not", &dii, &ni, &doi,
&one, A.data (), &dii, y, &doi, &zero, x, &dii);
}
if (have_bias) delete [] y;
}
void LinearTransform::set_is_orthonormal ()
{
if (d_out > d_in) {
// not clear what we should do in this case
is_orthonormal = false;
return;
}
if (d_out == 0) { // borderline case, unnormalized matrix
is_orthonormal = true;
return;
}
double eps = 4e-5;
FAISS_ASSERT(A.size() >= d_out * d_in);
{
std::vector<float> ATA(d_out * d_out);
FINTEGER dii = d_in, doi = d_out;
float one = 1.0, zero = 0.0;
sgemm_ ("Transposed", "Not", &doi, &doi, &dii,
&one, A.data (), &dii,
A.data(), &dii,
&zero, ATA.data(), &doi);
is_orthonormal = true;
for (long i = 0; i < d_out; i++) {
for (long j = 0; j < d_out; j++) {
float v = ATA[i + j * d_out];
if (i == j) v-= 1;
if (fabs(v) > eps) {
is_orthonormal = false;
}
}
}
}
}
void LinearTransform::reverse_transform (idx_t n, const float * xt,
float *x) const
{
if (is_orthonormal) {
transform_transpose (n, xt, x);
} else {
FAISS_THROW_MSG ("reverse transform not implemented for non-orthonormal matrices");
}
}
void LinearTransform::print_if_verbose (
const char*name, const std::vector<double> &mat,
int n, int d) const
{
if (!verbose) return;
printf("matrix %s: %d*%d [\n", name, n, d);
FAISS_THROW_IF_NOT (mat.size() >= n * d);
for (int i = 0; i < n; i++) {
for (int j = 0; j < d; j++) {
printf("%10.5g ", mat[i * d + j]);
}
printf("\n");
}
printf("]\n");
}
/*********************************************
* RandomRotationMatrix
*********************************************/
void RandomRotationMatrix::init (int seed)
{
if(d_out <= d_in) {
A.resize (d_out * d_in);
float *q = A.data();
float_randn(q, d_out * d_in, seed);
matrix_qr(d_in, d_out, q);
} else {
// use tight-frame transformation
A.resize (d_out * d_out);
float *q = A.data();
float_randn(q, d_out * d_out, seed);
matrix_qr(d_out, d_out, q);
// remove columns
int i, j;
for (i = 0; i < d_out; i++) {
for(j = 0; j < d_in; j++) {
q[i * d_in + j] = q[i * d_out + j];
}
}
A.resize(d_in * d_out);
}
is_orthonormal = true;
is_trained = true;
}
void RandomRotationMatrix::train (Index::idx_t /*n*/, const float */*x*/)
{
// initialize with some arbitrary seed
init (12345);
}
/*********************************************
* PCAMatrix
*********************************************/
PCAMatrix::PCAMatrix (int d_in, int d_out,
float eigen_power, bool random_rotation):
LinearTransform(d_in, d_out, true),
eigen_power(eigen_power), random_rotation(random_rotation)
{
is_trained = false;
max_points_per_d = 1000;
balanced_bins = 0;
}
namespace {
/// Compute the eigenvalue decomposition of symmetric matrix cov,
/// dimensions d_in-by-d_in. Output eigenvectors in cov.
void eig(size_t d_in, double *cov, double *eigenvalues, int verbose)
{
{ // compute eigenvalues and vectors
FINTEGER info = 0, lwork = -1, di = d_in;
double workq;
dsyev_ ("Vectors as well", "Upper",
&di, cov, &di, eigenvalues, &workq, &lwork, &info);
lwork = FINTEGER(workq);
double *work = new double[lwork];
dsyev_ ("Vectors as well", "Upper",
&di, cov, &di, eigenvalues, work, &lwork, &info);
delete [] work;
if (info != 0) {
fprintf (stderr, "WARN ssyev info returns %d, "
"a very bad PCA matrix is learnt\n",
int(info));
// do not throw exception, as the matrix could still be useful
}
if(verbose && d_in <= 10) {
printf("info=%ld new eigvals=[", long(info));
for(int j = 0; j < d_in; j++) printf("%g ", eigenvalues[j]);
printf("]\n");
double *ci = cov;
printf("eigenvecs=\n");
for(int i = 0; i < d_in; i++) {
for(int j = 0; j < d_in; j++)
printf("%10.4g ", *ci++);
printf("\n");
}
}
}
// revert order of eigenvectors & values
for(int i = 0; i < d_in / 2; i++) {
std::swap(eigenvalues[i], eigenvalues[d_in - 1 - i]);
double *v1 = cov + i * d_in;
double *v2 = cov + (d_in - 1 - i) * d_in;
for(int j = 0; j < d_in; j++)
std::swap(v1[j], v2[j]);
}
}
}
void PCAMatrix::train (Index::idx_t n, const float *x)
{
const float * x_in = x;
x = fvecs_maybe_subsample (d_in, (size_t*)&n,
max_points_per_d * d_in, x, verbose);
ScopeDeleter<float> del_x (x != x_in ? x : nullptr);
// compute mean
mean.clear(); mean.resize(d_in, 0.0);
if (have_bias) { // we may want to skip the bias
const float *xi = x;
for (int i = 0; i < n; i++) {
for(int j = 0; j < d_in; j++)
mean[j] += *xi++;
}
for(int j = 0; j < d_in; j++)
mean[j] /= n;
}
if(verbose) {
printf("mean=[");
for(int j = 0; j < d_in; j++) printf("%g ", mean[j]);
printf("]\n");
}
if(n >= d_in) {
// compute covariance matrix, store it in PCA matrix
PCAMat.resize(d_in * d_in);
float * cov = PCAMat.data();
{ // initialize with mean * mean^T term
float *ci = cov;
for(int i = 0; i < d_in; i++) {
for(int j = 0; j < d_in; j++)
*ci++ = - n * mean[i] * mean[j];
}
}
{
FINTEGER di = d_in, ni = n;
float one = 1.0;
ssyrk_ ("Up", "Non transposed",
&di, &ni, &one, (float*)x, &di, &one, cov, &di);
}
if(verbose && d_in <= 10) {
float *ci = cov;
printf("cov=\n");
for(int i = 0; i < d_in; i++) {
for(int j = 0; j < d_in; j++)
printf("%10g ", *ci++);
printf("\n");
}
}
std::vector<double> covd (d_in * d_in);
for (size_t i = 0; i < d_in * d_in; i++) covd [i] = cov [i];
std::vector<double> eigenvaluesd (d_in);
eig (d_in, covd.data (), eigenvaluesd.data (), verbose);
for (size_t i = 0; i < d_in * d_in; i++) PCAMat [i] = covd [i];
eigenvalues.resize (d_in);
for (size_t i = 0; i < d_in; i++)
eigenvalues [i] = eigenvaluesd [i];
} else {
std::vector<float> xc (n * d_in);
for (size_t i = 0; i < n; i++)
for(size_t j = 0; j < d_in; j++)
xc [i * d_in + j] = x [i * d_in + j] - mean[j];
// compute Gram matrix
std::vector<float> gram (n * n);
{
FINTEGER di = d_in, ni = n;
float one = 1.0, zero = 0.0;
ssyrk_ ("Up", "Transposed",
&ni, &di, &one, xc.data(), &di, &zero, gram.data(), &ni);
}
if(verbose && d_in <= 10) {
float *ci = gram.data();
printf("gram=\n");
for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++)
printf("%10g ", *ci++);
printf("\n");
}
}
std::vector<double> gramd (n * n);
for (size_t i = 0; i < n * n; i++)
gramd [i] = gram [i];
std::vector<double> eigenvaluesd (n);
// eig will fill in only the n first eigenvals
eig (n, gramd.data (), eigenvaluesd.data (), verbose);
PCAMat.resize(d_in * n);
for (size_t i = 0; i < n * n; i++)
gram [i] = gramd [i];
eigenvalues.resize (d_in);
// fill in only the n first ones
for (size_t i = 0; i < n; i++)
eigenvalues [i] = eigenvaluesd [i];
{ // compute PCAMat = x' * v
FINTEGER di = d_in, ni = n;
float one = 1.0;
sgemm_ ("Non", "Non Trans",
&di, &ni, &ni,
&one, xc.data(), &di, gram.data(), &ni,
&one, PCAMat.data(), &di);
}
if(verbose && d_in <= 10) {
float *ci = PCAMat.data();
printf("PCAMat=\n");
for(int i = 0; i < n; i++) {
for(int j = 0; j < d_in; j++)
printf("%10g ", *ci++);
printf("\n");
}
}
fvec_renorm_L2 (d_in, n, PCAMat.data());
}
prepare_Ab();
is_trained = true;
}
void PCAMatrix::copy_from (const PCAMatrix & other)
{
FAISS_THROW_IF_NOT (other.is_trained);
mean = other.mean;
eigenvalues = other.eigenvalues;
PCAMat = other.PCAMat;
prepare_Ab ();
is_trained = true;
}
void PCAMatrix::prepare_Ab ()
{
FAISS_THROW_IF_NOT_FMT (
d_out * d_in <= PCAMat.size(),
"PCA matrix cannot output %d dimensions from %d ",
d_out, d_in);
if (!random_rotation) {
A = PCAMat;
A.resize(d_out * d_in); // strip off useless dimensions
// first scale the components
if (eigen_power != 0) {
float *ai = A.data();
for (int i = 0; i < d_out; i++) {
float factor = pow(eigenvalues[i], eigen_power);
for(int j = 0; j < d_in; j++)
*ai++ *= factor;
}
}
if (balanced_bins != 0) {
FAISS_THROW_IF_NOT (d_out % balanced_bins == 0);
int dsub = d_out / balanced_bins;
std::vector <float> Ain;
std::swap(A, Ain);
A.resize(d_out * d_in);
std::vector <float> accu(balanced_bins);
std::vector <int> counter(balanced_bins);
// greedy assignment
for (int i = 0; i < d_out; i++) {
// find best bin
int best_j = -1;
float min_w = 1e30;
for (int j = 0; j < balanced_bins; j++) {
if (counter[j] < dsub && accu[j] < min_w) {
min_w = accu[j];
best_j = j;
}
}
int row_dst = best_j * dsub + counter[best_j];
accu[best_j] += eigenvalues[i];
counter[best_j] ++;
memcpy (&A[row_dst * d_in], &Ain[i * d_in],
d_in * sizeof (A[0]));
}
if (verbose) {
printf(" bin accu=[");
for (int i = 0; i < balanced_bins; i++)
printf("%g ", accu[i]);
printf("]\n");
}
}
} else {
FAISS_THROW_IF_NOT_MSG (balanced_bins == 0,
"both balancing bins and applying a random rotation "
"does not make sense");
RandomRotationMatrix rr(d_out, d_out);
rr.init(5);
// apply scaling on the rotation matrix (right multiplication)
if (eigen_power != 0) {
for (int i = 0; i < d_out; i++) {
float factor = pow(eigenvalues[i], eigen_power);
for(int j = 0; j < d_out; j++)
rr.A[j * d_out + i] *= factor;
}
}
A.resize(d_in * d_out);
{
FINTEGER dii = d_in, doo = d_out;
float one = 1.0, zero = 0.0;
sgemm_ ("Not", "Not", &dii, &doo, &doo,
&one, PCAMat.data(), &dii, rr.A.data(), &doo, &zero,
A.data(), &dii);
}
}
b.clear(); b.resize(d_out);
for (int i = 0; i < d_out; i++) {
float accu = 0;
for (int j = 0; j < d_in; j++)
accu -= mean[j] * A[j + i * d_in];
b[i] = accu;
}
is_orthonormal = eigen_power == 0;
}
/*********************************************
* ITQMatrix
*********************************************/
ITQMatrix::ITQMatrix (int d):
LinearTransform(d, d, false),
max_iter (50),
seed (123)
{
}
/** translated from fbcode/deeplearning/catalyzer/catalyzer/quantizers.py */
void ITQMatrix::train (Index::idx_t n, const float* xf)
{
size_t d = d_in;
std::vector<double> rotation (d * d);
if (init_rotation.size() == d * d) {
memcpy (rotation.data(), init_rotation.data(),
d * d * sizeof(rotation[0]));
} else {
RandomRotationMatrix rrot (d, d);
rrot.init (seed);
for (size_t i = 0; i < d * d; i++) {
rotation[i] = rrot.A[i];
}
}
std::vector<double> x (n * d);
for (size_t i = 0; i < n * d; i++) {
x[i] = xf[i];
}
std::vector<double> rotated_x (n * d), cov_mat (d * d);
std::vector<double> u (d * d), vt (d * d), singvals (d);
for (int i = 0; i < max_iter; i++) {
print_if_verbose ("rotation", rotation, d, d);
{ // rotated_data = np.dot(training_data, rotation)
FINTEGER di = d, ni = n;
double one = 1, zero = 0;
dgemm_ ("N", "N", &di, &ni, &di,
&one, rotation.data(), &di, x.data(), &di,
&zero, rotated_x.data(), &di);
}
print_if_verbose ("rotated_x", rotated_x, n, d);
// binarize
for (size_t j = 0; j < n * d; j++) {
rotated_x[j] = rotated_x[j] < 0 ? -1 : 1;
}
// covariance matrix
{ // rotated_data = np.dot(training_data, rotation)
FINTEGER di = d, ni = n;
double one = 1, zero = 0;
dgemm_ ("N", "T", &di, &di, &ni,
&one, rotated_x.data(), &di, x.data(), &di,
&zero, cov_mat.data(), &di);
}
print_if_verbose ("cov_mat", cov_mat, d, d);
// SVD
{
FINTEGER di = d;
FINTEGER lwork = -1, info;
double lwork1;
// workspace query
dgesvd_ ("A", "A", &di, &di, cov_mat.data(), &di,
singvals.data(), u.data(), &di,
vt.data(), &di,
&lwork1, &lwork, &info);
FAISS_THROW_IF_NOT (info == 0);
lwork = size_t (lwork1);
std::vector<double> work (lwork);
dgesvd_ ("A", "A", &di, &di, cov_mat.data(), &di,
singvals.data(), u.data(), &di,
vt.data(), &di,
work.data(), &lwork, &info);
FAISS_THROW_IF_NOT_FMT (info == 0, "sgesvd returned info=%d", info);
}
print_if_verbose ("u", u, d, d);
print_if_verbose ("vt", vt, d, d);
// update rotation
{
FINTEGER di = d;
double one = 1, zero = 0;
dgemm_ ("N", "T", &di, &di, &di,
&one, u.data(), &di, vt.data(), &di,
&zero, rotation.data(), &di);
}
print_if_verbose ("final rot", rotation, d, d);
}
A.resize (d * d);
for (size_t i = 0; i < d; i++) {
for (size_t j = 0; j < d; j++) {
A[i + d * j] = rotation[j + d * i];
}
}
is_trained = true;
}
ITQTransform::ITQTransform (int d_in, int d_out, bool do_pca):
VectorTransform (d_in, d_out),
do_pca (do_pca),
itq (d_out),
pca_then_itq (d_in, d_out, false)
{
if (!do_pca) {
FAISS_THROW_IF_NOT (d_in == d_out);
}
max_train_per_dim = 10;
is_trained = false;
}
void ITQTransform::train (idx_t n, const float *x)
{
FAISS_THROW_IF_NOT (!is_trained);
const float * x_in = x;
size_t max_train_points = std::max(d_in * max_train_per_dim, 32768);
x = fvecs_maybe_subsample (d_in, (size_t*)&n, max_train_points, x);
ScopeDeleter<float> del_x (x != x_in ? x : nullptr);
std::unique_ptr<float []> x_norm(new float[n * d_in]);
{ // normalize
int d = d_in;
mean.resize (d, 0);
for (idx_t i = 0; i < n; i++) {
for (idx_t j = 0; j < d; j++) {
mean[j] += x[i * d + j];
}
}
for (idx_t j = 0; j < d; j++) {
mean[j] /= n;
}
for (idx_t i = 0; i < n; i++) {
for (idx_t j = 0; j < d; j++) {
x_norm[i * d + j] = x[i * d + j] - mean[j];
}
}
fvec_renorm_L2 (d_in, n, x_norm.get());
}
// train PCA
PCAMatrix pca (d_in, d_out);
float *x_pca;
std::unique_ptr<float []> x_pca_del;
if (do_pca) {
pca.have_bias = false; // for consistency with reference implem
pca.train (n, x_norm.get());
x_pca = pca.apply (n, x_norm.get());
x_pca_del.reset(x_pca);
} else {
x_pca = x_norm.get();
}
// train ITQ
itq.train (n, x_pca);
// merge PCA and ITQ
if (do_pca) {
FINTEGER di = d_out, dini = d_in;
float one = 1, zero = 0;
pca_then_itq.A.resize(d_in * d_out);
sgemm_ ("N", "N", &dini, &di, &di,
&one, pca.A.data(), &dini,
itq.A.data(), &di,
&zero, pca_then_itq.A.data(), &dini);
} else {
pca_then_itq.A = itq.A;
}
pca_then_itq.is_trained = true;
is_trained = true;
}
void ITQTransform::apply_noalloc (Index::idx_t n, const float * x,
float * xt) const
{
FAISS_THROW_IF_NOT_MSG(is_trained, "Transformation not trained yet");
std::unique_ptr<float []> x_norm(new float[n * d_in]);
{ // normalize
int d = d_in;
for (idx_t i = 0; i < n; i++) {
for (idx_t j = 0; j < d; j++) {
x_norm[i * d + j] = x[i * d + j] - mean[j];
}
}
// this is not really useful if we are going to binarize right
// afterwards but OK
fvec_renorm_L2 (d_in, n, x_norm.get());
}
pca_then_itq.apply_noalloc (n, x_norm.get(), xt);
}
/*********************************************
* OPQMatrix
*********************************************/
OPQMatrix::OPQMatrix (int d, int M, int d2):
LinearTransform (d, d2 == -1 ? d : d2, false), M(M),
niter (50),
niter_pq (4), niter_pq_0 (40),
verbose(false),
pq(nullptr)
{
is_trained = false;
// OPQ is quite expensive to train, so set this right.
max_train_points = 256 * 256;
pq = nullptr;
}
void OPQMatrix::train (Index::idx_t n, const float *x)
{
const float * x_in = x;
x = fvecs_maybe_subsample (d_in, (size_t*)&n,
max_train_points, x, verbose);
ScopeDeleter<float> del_x (x != x_in ? x : nullptr);
// To support d_out > d_in, we pad input vectors with 0s to d_out
size_t d = d_out <= d_in ? d_in : d_out;
size_t d2 = d_out;
#if 0
// what this test shows: the only way of getting bit-exact
// reproducible results with sgeqrf and sgesvd seems to be forcing
// single-threading.
{ // test repro
std::vector<float> r (d * d);
float * rotation = r.data();
float_randn (rotation, d * d, 1234);
printf("CS0: %016lx\n",
ivec_checksum (128*128, (int*)rotation));
matrix_qr (d, d, rotation);
printf("CS1: %016lx\n",
ivec_checksum (128*128, (int*)rotation));
return;
}
#endif
if (verbose) {
printf ("OPQMatrix::train: training an OPQ rotation matrix "
"for M=%d from %ld vectors in %dD -> %dD\n",
M, n, d_in, d_out);
}
std::vector<float> xtrain (n * d);
// center x
{
std::vector<float> sum (d);
const float *xi = x;
for (size_t i = 0; i < n; i++) {
for (int j = 0; j < d_in; j++)
sum [j] += *xi++;
}
for (int i = 0; i < d; i++) sum[i] /= n;
float *yi = xtrain.data();
xi = x;
for (size_t i = 0; i < n; i++) {
for (int j = 0; j < d_in; j++)
*yi++ = *xi++ - sum[j];
yi += d - d_in;
}
}
float *rotation;
if (A.size () == 0) {
A.resize (d * d);
rotation = A.data();
if (verbose)
printf(" OPQMatrix::train: making random %ld*%ld rotation\n",
d, d);
float_randn (rotation, d * d, 1234);
matrix_qr (d, d, rotation);
// we use only the d * d2 upper part of the matrix
A.resize (d * d2);
} else {
FAISS_THROW_IF_NOT (A.size() == d * d2);
rotation = A.data();
}
std::vector<float>
xproj (d2 * n), pq_recons (d2 * n), xxr (d * n),
tmp(d * d * 4);
ProductQuantizer pq_default (d2, M, 8);
ProductQuantizer &pq_regular = pq ? *pq : pq_default;
std::vector<uint8_t> codes (pq_regular.code_size * n);
double t0 = getmillisecs();
for (int iter = 0; iter < niter; iter++) {
{ // torch.mm(xtrain, rotation:t())
FINTEGER di = d, d2i = d2, ni = n;
float zero = 0, one = 1;
sgemm_ ("Transposed", "Not transposed",
&d2i, &ni, &di,
&one, rotation, &di,
xtrain.data(), &di,
&zero, xproj.data(), &d2i);
}
pq_regular.cp.max_points_per_centroid = 1000;
pq_regular.cp.niter = iter == 0 ? niter_pq_0 : niter_pq;
pq_regular.verbose = verbose;
pq_regular.train (n, xproj.data());
if (verbose) {
printf(" encode / decode\n");
}
if (pq_regular.assign_index) {
pq_regular.compute_codes_with_assign_index
(xproj.data(), codes.data(), n);
} else {
pq_regular.compute_codes (xproj.data(), codes.data(), n);
}
pq_regular.decode (codes.data(), pq_recons.data(), n);
float pq_err = fvec_L2sqr (pq_recons.data(), xproj.data(), n * d2) / n;
if (verbose)
printf (" Iteration %d (%d PQ iterations):"
"%.3f s, obj=%g\n", iter, pq_regular.cp.niter,
(getmillisecs () - t0) / 1000.0, pq_err);
{
float *u = tmp.data(), *vt = &tmp [d * d];
float *sing_val = &tmp [2 * d * d];
FINTEGER di = d, d2i = d2, ni = n;
float one = 1, zero = 0;
if (verbose) {
printf(" X * recons\n");
}
// torch.mm(xtrain:t(), pq_recons)
sgemm_ ("Not", "Transposed",
&d2i, &di, &ni,
&one, pq_recons.data(), &d2i,
xtrain.data(), &di,
&zero, xxr.data(), &d2i);
FINTEGER lwork = -1, info = -1;
float worksz;
// workspace query
sgesvd_ ("All", "All",
&d2i, &di, xxr.data(), &d2i,
sing_val,
vt, &d2i, u, &di,
&worksz, &lwork, &info);
lwork = int(worksz);
std::vector<float> work (lwork);
// u and vt swapped
sgesvd_ ("All", "All",
&d2i, &di, xxr.data(), &d2i,
sing_val,
vt, &d2i, u, &di,
work.data(), &lwork, &info);
sgemm_ ("Transposed", "Transposed",
&di, &d2i, &d2i,
&one, u, &di, vt, &d2i,
&zero, rotation, &di);
}
pq_regular.train_type = ProductQuantizer::Train_hot_start;
}
// revert A matrix
if (d > d_in) {
for (long i = 0; i < d_out; i++)
memmove (&A[i * d_in], &A[i * d], sizeof(A[0]) * d_in);
A.resize (d_in * d_out);
}
is_trained = true;
is_orthonormal = true;
}
/*********************************************
* NormalizationTransform
*********************************************/
NormalizationTransform::NormalizationTransform (int d, float norm):
VectorTransform (d, d), norm (norm)
{
}
NormalizationTransform::NormalizationTransform ():
VectorTransform (-1, -1), norm (-1)
{
}
void NormalizationTransform::apply_noalloc
(idx_t n, const float* x, float* xt) const
{
if (norm == 2.0) {
memcpy (xt, x, sizeof (x[0]) * n * d_in);
fvec_renorm_L2 (d_in, n, xt);
} else {
FAISS_THROW_MSG ("not implemented");
}
}
void NormalizationTransform::reverse_transform (idx_t n, const float* xt,
float* x) const
{
memcpy (x, xt, sizeof (xt[0]) * n * d_in);
}
/*********************************************
* CenteringTransform
*********************************************/
CenteringTransform::CenteringTransform (int d):
VectorTransform (d, d)
{
is_trained = false;
}
void CenteringTransform::train(Index::idx_t n, const float *x) {
FAISS_THROW_IF_NOT_MSG(n > 0, "need at least one training vector");
mean.resize (d_in, 0);
for (idx_t i = 0; i < n; i++) {
for (size_t j = 0; j < d_in; j++) {
mean[j] += *x++;
}
}
for (size_t j = 0; j < d_in; j++) {
mean[j] /= n;
}
is_trained = true;
}
void CenteringTransform::apply_noalloc
(idx_t n, const float* x, float* xt) const
{
FAISS_THROW_IF_NOT (is_trained);
for (idx_t i = 0; i < n; i++) {
for (size_t j = 0; j < d_in; j++) {
*xt++ = *x++ - mean[j];
}
}
}
void CenteringTransform::reverse_transform (idx_t n, const float* xt,
float* x) const
{
FAISS_THROW_IF_NOT (is_trained);
for (idx_t i = 0; i < n; i++) {
for (size_t j = 0; j < d_in; j++) {
*x++ = *xt++ + mean[j];
}
}
}
/*********************************************
* RemapDimensionsTransform
*********************************************/
RemapDimensionsTransform::RemapDimensionsTransform (
int d_in, int d_out, const int *map_in):
VectorTransform (d_in, d_out)
{
map.resize (d_out);
for (int i = 0; i < d_out; i++) {
map[i] = map_in[i];
FAISS_THROW_IF_NOT (map[i] == -1 || (map[i] >= 0 && map[i] < d_in));
}
}
RemapDimensionsTransform::RemapDimensionsTransform (
int d_in, int d_out, bool uniform): VectorTransform (d_in, d_out)
{
map.resize (d_out, -1);
if (uniform) {
if (d_in < d_out) {
for (int i = 0; i < d_in; i++) {
map [i * d_out / d_in] = i;
}
} else {
for (int i = 0; i < d_out; i++) {
map [i] = i * d_in / d_out;
}
}
} else {
for (int i = 0; i < d_in && i < d_out; i++)
map [i] = i;
}
}
void RemapDimensionsTransform::apply_noalloc (idx_t n, const float * x,
float *xt) const
{
for (idx_t i = 0; i < n; i++) {
for (int j = 0; j < d_out; j++) {
xt[j] = map[j] < 0 ? 0 : x[map[j]];
}
x += d_in;
xt += d_out;
}
}
void RemapDimensionsTransform::reverse_transform (idx_t n, const float * xt,
float *x) const
{
memset (x, 0, sizeof (*x) * n * d_in);
for (idx_t i = 0; i < n; i++) {
for (int j = 0; j < d_out; j++) {
if (map[j] >= 0) x[map[j]] = xt[j];
}
x += d_in;
xt += d_out;
}
}