1158 lines
32 KiB
C++
1158 lines
32 KiB
C++
/**
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
*
|
|
* This source code is licensed under the MIT license found in the
|
|
* LICENSE file in the root directory of this source tree.
|
|
*/
|
|
|
|
// -*- c++ -*-
|
|
|
|
#include <faiss/VectorTransform.h>
|
|
|
|
#include <cstdio>
|
|
#include <cmath>
|
|
#include <cstring>
|
|
#include <memory>
|
|
|
|
#include <faiss/utils/distances.h>
|
|
#include <faiss/utils/random.h>
|
|
#include <faiss/utils/utils.h>
|
|
#include <faiss/impl/FaissAssert.h>
|
|
#include <faiss/IndexPQ.h>
|
|
|
|
using namespace faiss;
|
|
|
|
|
|
extern "C" {
|
|
|
|
// this is to keep the clang syntax checker happy
|
|
#ifndef FINTEGER
|
|
#define FINTEGER int
|
|
#endif
|
|
|
|
|
|
/* declare BLAS functions, see http://www.netlib.org/clapack/cblas/ */
|
|
|
|
int sgemm_ (
|
|
const char *transa, const char *transb, FINTEGER *m, FINTEGER *
|
|
n, FINTEGER *k, const float *alpha, const float *a,
|
|
FINTEGER *lda, const float *b,
|
|
FINTEGER *ldb, float *beta,
|
|
float *c, FINTEGER *ldc);
|
|
|
|
int dgemm_ (
|
|
const char *transa, const char *transb, FINTEGER *m, FINTEGER *
|
|
n, FINTEGER *k, const double *alpha, const double *a,
|
|
FINTEGER *lda, const double *b,
|
|
FINTEGER *ldb, double *beta,
|
|
double *c, FINTEGER *ldc);
|
|
|
|
int ssyrk_ (
|
|
const char *uplo, const char *trans, FINTEGER *n, FINTEGER *k,
|
|
float *alpha, float *a, FINTEGER *lda,
|
|
float *beta, float *c, FINTEGER *ldc);
|
|
|
|
/* Lapack functions from http://www.netlib.org/clapack/old/single/ */
|
|
|
|
int ssyev_ (
|
|
const char *jobz, const char *uplo, FINTEGER *n, float *a,
|
|
FINTEGER *lda, float *w, float *work, FINTEGER *lwork,
|
|
FINTEGER *info);
|
|
|
|
int dsyev_ (
|
|
const char *jobz, const char *uplo, FINTEGER *n, double *a,
|
|
FINTEGER *lda, double *w, double *work, FINTEGER *lwork,
|
|
FINTEGER *info);
|
|
|
|
int sgesvd_(
|
|
const char *jobu, const char *jobvt, FINTEGER *m, FINTEGER *n,
|
|
float *a, FINTEGER *lda, float *s, float *u, FINTEGER *ldu, float *vt,
|
|
FINTEGER *ldvt, float *work, FINTEGER *lwork, FINTEGER *info);
|
|
|
|
|
|
int dgesvd_(
|
|
const char *jobu, const char *jobvt, FINTEGER *m, FINTEGER *n,
|
|
double *a, FINTEGER *lda, double *s, double *u, FINTEGER *ldu, double *vt,
|
|
FINTEGER *ldvt, double *work, FINTEGER *lwork, FINTEGER *info);
|
|
|
|
}
|
|
|
|
/*********************************************
|
|
* VectorTransform
|
|
*********************************************/
|
|
|
|
|
|
|
|
float * VectorTransform::apply (Index::idx_t n, const float * x) const
|
|
{
|
|
float * xt = new float[n * d_out];
|
|
apply_noalloc (n, x, xt);
|
|
return xt;
|
|
}
|
|
|
|
|
|
void VectorTransform::train (idx_t, const float *) {
|
|
// does nothing by default
|
|
}
|
|
|
|
|
|
void VectorTransform::reverse_transform (
|
|
idx_t , const float *,
|
|
float *) const
|
|
{
|
|
FAISS_THROW_MSG ("reverse transform not implemented");
|
|
}
|
|
|
|
|
|
|
|
|
|
/*********************************************
|
|
* LinearTransform
|
|
*********************************************/
|
|
|
|
/// both d_in > d_out and d_out < d_in are supported
|
|
LinearTransform::LinearTransform (int d_in, int d_out,
|
|
bool have_bias):
|
|
VectorTransform (d_in, d_out), have_bias (have_bias),
|
|
is_orthonormal (false), verbose (false)
|
|
{
|
|
is_trained = false; // will be trained when A and b are initialized
|
|
}
|
|
|
|
void LinearTransform::apply_noalloc (Index::idx_t n, const float * x,
|
|
float * xt) const
|
|
{
|
|
FAISS_THROW_IF_NOT_MSG(is_trained, "Transformation not trained yet");
|
|
|
|
float c_factor;
|
|
if (have_bias) {
|
|
FAISS_THROW_IF_NOT_MSG (b.size() == d_out, "Bias not initialized");
|
|
float * xi = xt;
|
|
for (int i = 0; i < n; i++)
|
|
for(int j = 0; j < d_out; j++)
|
|
*xi++ = b[j];
|
|
c_factor = 1.0;
|
|
} else {
|
|
c_factor = 0.0;
|
|
}
|
|
|
|
FAISS_THROW_IF_NOT_MSG (A.size() == d_out * d_in,
|
|
"Transformation matrix not initialized");
|
|
|
|
float one = 1;
|
|
FINTEGER nbiti = d_out, ni = n, di = d_in;
|
|
sgemm_ ("Transposed", "Not transposed",
|
|
&nbiti, &ni, &di,
|
|
&one, A.data(), &di, x, &di, &c_factor, xt, &nbiti);
|
|
|
|
}
|
|
|
|
|
|
void LinearTransform::transform_transpose (idx_t n, const float * y,
|
|
float *x) const
|
|
{
|
|
if (have_bias) { // allocate buffer to store bias-corrected data
|
|
float *y_new = new float [n * d_out];
|
|
const float *yr = y;
|
|
float *yw = y_new;
|
|
for (idx_t i = 0; i < n; i++) {
|
|
for (int j = 0; j < d_out; j++) {
|
|
*yw++ = *yr++ - b [j];
|
|
}
|
|
}
|
|
y = y_new;
|
|
}
|
|
|
|
{
|
|
FINTEGER dii = d_in, doi = d_out, ni = n;
|
|
float one = 1.0, zero = 0.0;
|
|
sgemm_ ("Not", "Not", &dii, &ni, &doi,
|
|
&one, A.data (), &dii, y, &doi, &zero, x, &dii);
|
|
}
|
|
|
|
if (have_bias) delete [] y;
|
|
}
|
|
|
|
void LinearTransform::set_is_orthonormal ()
|
|
{
|
|
if (d_out > d_in) {
|
|
// not clear what we should do in this case
|
|
is_orthonormal = false;
|
|
return;
|
|
}
|
|
if (d_out == 0) { // borderline case, unnormalized matrix
|
|
is_orthonormal = true;
|
|
return;
|
|
}
|
|
|
|
double eps = 4e-5;
|
|
FAISS_ASSERT(A.size() >= d_out * d_in);
|
|
{
|
|
std::vector<float> ATA(d_out * d_out);
|
|
FINTEGER dii = d_in, doi = d_out;
|
|
float one = 1.0, zero = 0.0;
|
|
|
|
sgemm_ ("Transposed", "Not", &doi, &doi, &dii,
|
|
&one, A.data (), &dii,
|
|
A.data(), &dii,
|
|
&zero, ATA.data(), &doi);
|
|
|
|
is_orthonormal = true;
|
|
for (long i = 0; i < d_out; i++) {
|
|
for (long j = 0; j < d_out; j++) {
|
|
float v = ATA[i + j * d_out];
|
|
if (i == j) v-= 1;
|
|
if (fabs(v) > eps) {
|
|
is_orthonormal = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
void LinearTransform::reverse_transform (idx_t n, const float * xt,
|
|
float *x) const
|
|
{
|
|
if (is_orthonormal) {
|
|
transform_transpose (n, xt, x);
|
|
} else {
|
|
FAISS_THROW_MSG ("reverse transform not implemented for non-orthonormal matrices");
|
|
}
|
|
}
|
|
|
|
|
|
void LinearTransform::print_if_verbose (
|
|
const char*name, const std::vector<double> &mat,
|
|
int n, int d) const
|
|
{
|
|
if (!verbose) return;
|
|
printf("matrix %s: %d*%d [\n", name, n, d);
|
|
FAISS_THROW_IF_NOT (mat.size() >= n * d);
|
|
for (int i = 0; i < n; i++) {
|
|
for (int j = 0; j < d; j++) {
|
|
printf("%10.5g ", mat[i * d + j]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
printf("]\n");
|
|
}
|
|
|
|
/*********************************************
|
|
* RandomRotationMatrix
|
|
*********************************************/
|
|
|
|
void RandomRotationMatrix::init (int seed)
|
|
{
|
|
|
|
if(d_out <= d_in) {
|
|
A.resize (d_out * d_in);
|
|
float *q = A.data();
|
|
float_randn(q, d_out * d_in, seed);
|
|
matrix_qr(d_in, d_out, q);
|
|
} else {
|
|
// use tight-frame transformation
|
|
A.resize (d_out * d_out);
|
|
float *q = A.data();
|
|
float_randn(q, d_out * d_out, seed);
|
|
matrix_qr(d_out, d_out, q);
|
|
// remove columns
|
|
int i, j;
|
|
for (i = 0; i < d_out; i++) {
|
|
for(j = 0; j < d_in; j++) {
|
|
q[i * d_in + j] = q[i * d_out + j];
|
|
}
|
|
}
|
|
A.resize(d_in * d_out);
|
|
}
|
|
is_orthonormal = true;
|
|
is_trained = true;
|
|
}
|
|
|
|
void RandomRotationMatrix::train (Index::idx_t /*n*/, const float */*x*/)
|
|
{
|
|
// initialize with some arbitrary seed
|
|
init (12345);
|
|
}
|
|
|
|
|
|
/*********************************************
|
|
* PCAMatrix
|
|
*********************************************/
|
|
|
|
PCAMatrix::PCAMatrix (int d_in, int d_out,
|
|
float eigen_power, bool random_rotation):
|
|
LinearTransform(d_in, d_out, true),
|
|
eigen_power(eigen_power), random_rotation(random_rotation)
|
|
{
|
|
is_trained = false;
|
|
max_points_per_d = 1000;
|
|
balanced_bins = 0;
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
/// Compute the eigenvalue decomposition of symmetric matrix cov,
|
|
/// dimensions d_in-by-d_in. Output eigenvectors in cov.
|
|
|
|
void eig(size_t d_in, double *cov, double *eigenvalues, int verbose)
|
|
{
|
|
{ // compute eigenvalues and vectors
|
|
FINTEGER info = 0, lwork = -1, di = d_in;
|
|
double workq;
|
|
|
|
dsyev_ ("Vectors as well", "Upper",
|
|
&di, cov, &di, eigenvalues, &workq, &lwork, &info);
|
|
lwork = FINTEGER(workq);
|
|
double *work = new double[lwork];
|
|
|
|
dsyev_ ("Vectors as well", "Upper",
|
|
&di, cov, &di, eigenvalues, work, &lwork, &info);
|
|
|
|
delete [] work;
|
|
|
|
if (info != 0) {
|
|
fprintf (stderr, "WARN ssyev info returns %d, "
|
|
"a very bad PCA matrix is learnt\n",
|
|
int(info));
|
|
// do not throw exception, as the matrix could still be useful
|
|
}
|
|
|
|
|
|
if(verbose && d_in <= 10) {
|
|
printf("info=%ld new eigvals=[", long(info));
|
|
for(int j = 0; j < d_in; j++) printf("%g ", eigenvalues[j]);
|
|
printf("]\n");
|
|
|
|
double *ci = cov;
|
|
printf("eigenvecs=\n");
|
|
for(int i = 0; i < d_in; i++) {
|
|
for(int j = 0; j < d_in; j++)
|
|
printf("%10.4g ", *ci++);
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// revert order of eigenvectors & values
|
|
|
|
for(int i = 0; i < d_in / 2; i++) {
|
|
|
|
std::swap(eigenvalues[i], eigenvalues[d_in - 1 - i]);
|
|
double *v1 = cov + i * d_in;
|
|
double *v2 = cov + (d_in - 1 - i) * d_in;
|
|
for(int j = 0; j < d_in; j++)
|
|
std::swap(v1[j], v2[j]);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
void PCAMatrix::train (Index::idx_t n, const float *x)
|
|
{
|
|
const float * x_in = x;
|
|
|
|
x = fvecs_maybe_subsample (d_in, (size_t*)&n,
|
|
max_points_per_d * d_in, x, verbose);
|
|
|
|
ScopeDeleter<float> del_x (x != x_in ? x : nullptr);
|
|
|
|
// compute mean
|
|
mean.clear(); mean.resize(d_in, 0.0);
|
|
if (have_bias) { // we may want to skip the bias
|
|
const float *xi = x;
|
|
for (int i = 0; i < n; i++) {
|
|
for(int j = 0; j < d_in; j++)
|
|
mean[j] += *xi++;
|
|
}
|
|
for(int j = 0; j < d_in; j++)
|
|
mean[j] /= n;
|
|
}
|
|
if(verbose) {
|
|
printf("mean=[");
|
|
for(int j = 0; j < d_in; j++) printf("%g ", mean[j]);
|
|
printf("]\n");
|
|
}
|
|
|
|
if(n >= d_in) {
|
|
// compute covariance matrix, store it in PCA matrix
|
|
PCAMat.resize(d_in * d_in);
|
|
float * cov = PCAMat.data();
|
|
{ // initialize with mean * mean^T term
|
|
float *ci = cov;
|
|
for(int i = 0; i < d_in; i++) {
|
|
for(int j = 0; j < d_in; j++)
|
|
*ci++ = - n * mean[i] * mean[j];
|
|
}
|
|
}
|
|
{
|
|
FINTEGER di = d_in, ni = n;
|
|
float one = 1.0;
|
|
ssyrk_ ("Up", "Non transposed",
|
|
&di, &ni, &one, (float*)x, &di, &one, cov, &di);
|
|
|
|
}
|
|
if(verbose && d_in <= 10) {
|
|
float *ci = cov;
|
|
printf("cov=\n");
|
|
for(int i = 0; i < d_in; i++) {
|
|
for(int j = 0; j < d_in; j++)
|
|
printf("%10g ", *ci++);
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
std::vector<double> covd (d_in * d_in);
|
|
for (size_t i = 0; i < d_in * d_in; i++) covd [i] = cov [i];
|
|
|
|
std::vector<double> eigenvaluesd (d_in);
|
|
|
|
eig (d_in, covd.data (), eigenvaluesd.data (), verbose);
|
|
|
|
for (size_t i = 0; i < d_in * d_in; i++) PCAMat [i] = covd [i];
|
|
eigenvalues.resize (d_in);
|
|
|
|
for (size_t i = 0; i < d_in; i++)
|
|
eigenvalues [i] = eigenvaluesd [i];
|
|
|
|
|
|
} else {
|
|
|
|
std::vector<float> xc (n * d_in);
|
|
|
|
for (size_t i = 0; i < n; i++)
|
|
for(size_t j = 0; j < d_in; j++)
|
|
xc [i * d_in + j] = x [i * d_in + j] - mean[j];
|
|
|
|
// compute Gram matrix
|
|
std::vector<float> gram (n * n);
|
|
{
|
|
FINTEGER di = d_in, ni = n;
|
|
float one = 1.0, zero = 0.0;
|
|
ssyrk_ ("Up", "Transposed",
|
|
&ni, &di, &one, xc.data(), &di, &zero, gram.data(), &ni);
|
|
}
|
|
|
|
if(verbose && d_in <= 10) {
|
|
float *ci = gram.data();
|
|
printf("gram=\n");
|
|
for(int i = 0; i < n; i++) {
|
|
for(int j = 0; j < n; j++)
|
|
printf("%10g ", *ci++);
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
std::vector<double> gramd (n * n);
|
|
for (size_t i = 0; i < n * n; i++)
|
|
gramd [i] = gram [i];
|
|
|
|
std::vector<double> eigenvaluesd (n);
|
|
|
|
// eig will fill in only the n first eigenvals
|
|
|
|
eig (n, gramd.data (), eigenvaluesd.data (), verbose);
|
|
|
|
PCAMat.resize(d_in * n);
|
|
|
|
for (size_t i = 0; i < n * n; i++)
|
|
gram [i] = gramd [i];
|
|
|
|
eigenvalues.resize (d_in);
|
|
// fill in only the n first ones
|
|
for (size_t i = 0; i < n; i++)
|
|
eigenvalues [i] = eigenvaluesd [i];
|
|
|
|
{ // compute PCAMat = x' * v
|
|
FINTEGER di = d_in, ni = n;
|
|
float one = 1.0;
|
|
|
|
sgemm_ ("Non", "Non Trans",
|
|
&di, &ni, &ni,
|
|
&one, xc.data(), &di, gram.data(), &ni,
|
|
&one, PCAMat.data(), &di);
|
|
}
|
|
|
|
if(verbose && d_in <= 10) {
|
|
float *ci = PCAMat.data();
|
|
printf("PCAMat=\n");
|
|
for(int i = 0; i < n; i++) {
|
|
for(int j = 0; j < d_in; j++)
|
|
printf("%10g ", *ci++);
|
|
printf("\n");
|
|
}
|
|
}
|
|
fvec_renorm_L2 (d_in, n, PCAMat.data());
|
|
|
|
}
|
|
|
|
prepare_Ab();
|
|
is_trained = true;
|
|
}
|
|
|
|
void PCAMatrix::copy_from (const PCAMatrix & other)
|
|
{
|
|
FAISS_THROW_IF_NOT (other.is_trained);
|
|
mean = other.mean;
|
|
eigenvalues = other.eigenvalues;
|
|
PCAMat = other.PCAMat;
|
|
prepare_Ab ();
|
|
is_trained = true;
|
|
}
|
|
|
|
void PCAMatrix::prepare_Ab ()
|
|
{
|
|
FAISS_THROW_IF_NOT_FMT (
|
|
d_out * d_in <= PCAMat.size(),
|
|
"PCA matrix cannot output %d dimensions from %d ",
|
|
d_out, d_in);
|
|
|
|
if (!random_rotation) {
|
|
A = PCAMat;
|
|
A.resize(d_out * d_in); // strip off useless dimensions
|
|
|
|
// first scale the components
|
|
if (eigen_power != 0) {
|
|
float *ai = A.data();
|
|
for (int i = 0; i < d_out; i++) {
|
|
float factor = pow(eigenvalues[i], eigen_power);
|
|
for(int j = 0; j < d_in; j++)
|
|
*ai++ *= factor;
|
|
}
|
|
}
|
|
|
|
if (balanced_bins != 0) {
|
|
FAISS_THROW_IF_NOT (d_out % balanced_bins == 0);
|
|
int dsub = d_out / balanced_bins;
|
|
std::vector <float> Ain;
|
|
std::swap(A, Ain);
|
|
A.resize(d_out * d_in);
|
|
|
|
std::vector <float> accu(balanced_bins);
|
|
std::vector <int> counter(balanced_bins);
|
|
|
|
// greedy assignment
|
|
for (int i = 0; i < d_out; i++) {
|
|
// find best bin
|
|
int best_j = -1;
|
|
float min_w = 1e30;
|
|
for (int j = 0; j < balanced_bins; j++) {
|
|
if (counter[j] < dsub && accu[j] < min_w) {
|
|
min_w = accu[j];
|
|
best_j = j;
|
|
}
|
|
}
|
|
int row_dst = best_j * dsub + counter[best_j];
|
|
accu[best_j] += eigenvalues[i];
|
|
counter[best_j] ++;
|
|
memcpy (&A[row_dst * d_in], &Ain[i * d_in],
|
|
d_in * sizeof (A[0]));
|
|
}
|
|
|
|
if (verbose) {
|
|
printf(" bin accu=[");
|
|
for (int i = 0; i < balanced_bins; i++)
|
|
printf("%g ", accu[i]);
|
|
printf("]\n");
|
|
}
|
|
}
|
|
|
|
|
|
} else {
|
|
FAISS_THROW_IF_NOT_MSG (balanced_bins == 0,
|
|
"both balancing bins and applying a random rotation "
|
|
"does not make sense");
|
|
RandomRotationMatrix rr(d_out, d_out);
|
|
|
|
rr.init(5);
|
|
|
|
// apply scaling on the rotation matrix (right multiplication)
|
|
if (eigen_power != 0) {
|
|
for (int i = 0; i < d_out; i++) {
|
|
float factor = pow(eigenvalues[i], eigen_power);
|
|
for(int j = 0; j < d_out; j++)
|
|
rr.A[j * d_out + i] *= factor;
|
|
}
|
|
}
|
|
|
|
A.resize(d_in * d_out);
|
|
{
|
|
FINTEGER dii = d_in, doo = d_out;
|
|
float one = 1.0, zero = 0.0;
|
|
|
|
sgemm_ ("Not", "Not", &dii, &doo, &doo,
|
|
&one, PCAMat.data(), &dii, rr.A.data(), &doo, &zero,
|
|
A.data(), &dii);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
b.clear(); b.resize(d_out);
|
|
|
|
for (int i = 0; i < d_out; i++) {
|
|
float accu = 0;
|
|
for (int j = 0; j < d_in; j++)
|
|
accu -= mean[j] * A[j + i * d_in];
|
|
b[i] = accu;
|
|
}
|
|
|
|
is_orthonormal = eigen_power == 0;
|
|
|
|
}
|
|
|
|
/*********************************************
|
|
* ITQMatrix
|
|
*********************************************/
|
|
|
|
ITQMatrix::ITQMatrix (int d):
|
|
LinearTransform(d, d, false),
|
|
max_iter (50),
|
|
seed (123)
|
|
{
|
|
}
|
|
|
|
|
|
/** translated from fbcode/deeplearning/catalyzer/catalyzer/quantizers.py */
|
|
void ITQMatrix::train (Index::idx_t n, const float* xf)
|
|
{
|
|
size_t d = d_in;
|
|
std::vector<double> rotation (d * d);
|
|
|
|
if (init_rotation.size() == d * d) {
|
|
memcpy (rotation.data(), init_rotation.data(),
|
|
d * d * sizeof(rotation[0]));
|
|
} else {
|
|
RandomRotationMatrix rrot (d, d);
|
|
rrot.init (seed);
|
|
for (size_t i = 0; i < d * d; i++) {
|
|
rotation[i] = rrot.A[i];
|
|
}
|
|
}
|
|
|
|
std::vector<double> x (n * d);
|
|
|
|
for (size_t i = 0; i < n * d; i++) {
|
|
x[i] = xf[i];
|
|
}
|
|
|
|
std::vector<double> rotated_x (n * d), cov_mat (d * d);
|
|
std::vector<double> u (d * d), vt (d * d), singvals (d);
|
|
|
|
for (int i = 0; i < max_iter; i++) {
|
|
print_if_verbose ("rotation", rotation, d, d);
|
|
{ // rotated_data = np.dot(training_data, rotation)
|
|
FINTEGER di = d, ni = n;
|
|
double one = 1, zero = 0;
|
|
dgemm_ ("N", "N", &di, &ni, &di,
|
|
&one, rotation.data(), &di, x.data(), &di,
|
|
&zero, rotated_x.data(), &di);
|
|
}
|
|
print_if_verbose ("rotated_x", rotated_x, n, d);
|
|
// binarize
|
|
for (size_t j = 0; j < n * d; j++) {
|
|
rotated_x[j] = rotated_x[j] < 0 ? -1 : 1;
|
|
}
|
|
// covariance matrix
|
|
{ // rotated_data = np.dot(training_data, rotation)
|
|
FINTEGER di = d, ni = n;
|
|
double one = 1, zero = 0;
|
|
dgemm_ ("N", "T", &di, &di, &ni,
|
|
&one, rotated_x.data(), &di, x.data(), &di,
|
|
&zero, cov_mat.data(), &di);
|
|
}
|
|
print_if_verbose ("cov_mat", cov_mat, d, d);
|
|
// SVD
|
|
{
|
|
|
|
FINTEGER di = d;
|
|
FINTEGER lwork = -1, info;
|
|
double lwork1;
|
|
|
|
// workspace query
|
|
dgesvd_ ("A", "A", &di, &di, cov_mat.data(), &di,
|
|
singvals.data(), u.data(), &di,
|
|
vt.data(), &di,
|
|
&lwork1, &lwork, &info);
|
|
|
|
FAISS_THROW_IF_NOT (info == 0);
|
|
lwork = size_t (lwork1);
|
|
std::vector<double> work (lwork);
|
|
dgesvd_ ("A", "A", &di, &di, cov_mat.data(), &di,
|
|
singvals.data(), u.data(), &di,
|
|
vt.data(), &di,
|
|
work.data(), &lwork, &info);
|
|
FAISS_THROW_IF_NOT_FMT (info == 0, "sgesvd returned info=%d", info);
|
|
|
|
}
|
|
print_if_verbose ("u", u, d, d);
|
|
print_if_verbose ("vt", vt, d, d);
|
|
// update rotation
|
|
{
|
|
FINTEGER di = d;
|
|
double one = 1, zero = 0;
|
|
dgemm_ ("N", "T", &di, &di, &di,
|
|
&one, u.data(), &di, vt.data(), &di,
|
|
&zero, rotation.data(), &di);
|
|
}
|
|
print_if_verbose ("final rot", rotation, d, d);
|
|
|
|
}
|
|
A.resize (d * d);
|
|
for (size_t i = 0; i < d; i++) {
|
|
for (size_t j = 0; j < d; j++) {
|
|
A[i + d * j] = rotation[j + d * i];
|
|
}
|
|
}
|
|
is_trained = true;
|
|
|
|
}
|
|
|
|
ITQTransform::ITQTransform (int d_in, int d_out, bool do_pca):
|
|
VectorTransform (d_in, d_out),
|
|
do_pca (do_pca),
|
|
itq (d_out),
|
|
pca_then_itq (d_in, d_out, false)
|
|
{
|
|
if (!do_pca) {
|
|
FAISS_THROW_IF_NOT (d_in == d_out);
|
|
}
|
|
max_train_per_dim = 10;
|
|
is_trained = false;
|
|
}
|
|
|
|
|
|
|
|
|
|
void ITQTransform::train (idx_t n, const float *x)
|
|
{
|
|
FAISS_THROW_IF_NOT (!is_trained);
|
|
|
|
const float * x_in = x;
|
|
size_t max_train_points = std::max(d_in * max_train_per_dim, 32768);
|
|
x = fvecs_maybe_subsample (d_in, (size_t*)&n, max_train_points, x);
|
|
|
|
ScopeDeleter<float> del_x (x != x_in ? x : nullptr);
|
|
|
|
std::unique_ptr<float []> x_norm(new float[n * d_in]);
|
|
{ // normalize
|
|
int d = d_in;
|
|
|
|
mean.resize (d, 0);
|
|
for (idx_t i = 0; i < n; i++) {
|
|
for (idx_t j = 0; j < d; j++) {
|
|
mean[j] += x[i * d + j];
|
|
}
|
|
}
|
|
for (idx_t j = 0; j < d; j++) {
|
|
mean[j] /= n;
|
|
}
|
|
for (idx_t i = 0; i < n; i++) {
|
|
for (idx_t j = 0; j < d; j++) {
|
|
x_norm[i * d + j] = x[i * d + j] - mean[j];
|
|
}
|
|
}
|
|
fvec_renorm_L2 (d_in, n, x_norm.get());
|
|
}
|
|
|
|
// train PCA
|
|
|
|
PCAMatrix pca (d_in, d_out);
|
|
float *x_pca;
|
|
std::unique_ptr<float []> x_pca_del;
|
|
if (do_pca) {
|
|
pca.have_bias = false; // for consistency with reference implem
|
|
pca.train (n, x_norm.get());
|
|
x_pca = pca.apply (n, x_norm.get());
|
|
x_pca_del.reset(x_pca);
|
|
} else {
|
|
x_pca = x_norm.get();
|
|
}
|
|
|
|
// train ITQ
|
|
itq.train (n, x_pca);
|
|
|
|
// merge PCA and ITQ
|
|
if (do_pca) {
|
|
FINTEGER di = d_out, dini = d_in;
|
|
float one = 1, zero = 0;
|
|
pca_then_itq.A.resize(d_in * d_out);
|
|
sgemm_ ("N", "N", &dini, &di, &di,
|
|
&one, pca.A.data(), &dini,
|
|
itq.A.data(), &di,
|
|
&zero, pca_then_itq.A.data(), &dini);
|
|
} else {
|
|
pca_then_itq.A = itq.A;
|
|
}
|
|
pca_then_itq.is_trained = true;
|
|
is_trained = true;
|
|
}
|
|
|
|
void ITQTransform::apply_noalloc (Index::idx_t n, const float * x,
|
|
float * xt) const
|
|
{
|
|
FAISS_THROW_IF_NOT_MSG(is_trained, "Transformation not trained yet");
|
|
|
|
std::unique_ptr<float []> x_norm(new float[n * d_in]);
|
|
{ // normalize
|
|
int d = d_in;
|
|
for (idx_t i = 0; i < n; i++) {
|
|
for (idx_t j = 0; j < d; j++) {
|
|
x_norm[i * d + j] = x[i * d + j] - mean[j];
|
|
}
|
|
}
|
|
// this is not really useful if we are going to binarize right
|
|
// afterwards but OK
|
|
fvec_renorm_L2 (d_in, n, x_norm.get());
|
|
}
|
|
|
|
pca_then_itq.apply_noalloc (n, x_norm.get(), xt);
|
|
}
|
|
|
|
/*********************************************
|
|
* OPQMatrix
|
|
*********************************************/
|
|
|
|
|
|
OPQMatrix::OPQMatrix (int d, int M, int d2):
|
|
LinearTransform (d, d2 == -1 ? d : d2, false), M(M),
|
|
niter (50),
|
|
niter_pq (4), niter_pq_0 (40),
|
|
verbose(false),
|
|
pq(nullptr)
|
|
{
|
|
is_trained = false;
|
|
// OPQ is quite expensive to train, so set this right.
|
|
max_train_points = 256 * 256;
|
|
pq = nullptr;
|
|
}
|
|
|
|
|
|
|
|
void OPQMatrix::train (Index::idx_t n, const float *x)
|
|
{
|
|
|
|
const float * x_in = x;
|
|
|
|
x = fvecs_maybe_subsample (d_in, (size_t*)&n,
|
|
max_train_points, x, verbose);
|
|
|
|
ScopeDeleter<float> del_x (x != x_in ? x : nullptr);
|
|
|
|
// To support d_out > d_in, we pad input vectors with 0s to d_out
|
|
size_t d = d_out <= d_in ? d_in : d_out;
|
|
size_t d2 = d_out;
|
|
|
|
#if 0
|
|
// what this test shows: the only way of getting bit-exact
|
|
// reproducible results with sgeqrf and sgesvd seems to be forcing
|
|
// single-threading.
|
|
{ // test repro
|
|
std::vector<float> r (d * d);
|
|
float * rotation = r.data();
|
|
float_randn (rotation, d * d, 1234);
|
|
printf("CS0: %016lx\n",
|
|
ivec_checksum (128*128, (int*)rotation));
|
|
matrix_qr (d, d, rotation);
|
|
printf("CS1: %016lx\n",
|
|
ivec_checksum (128*128, (int*)rotation));
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (verbose) {
|
|
printf ("OPQMatrix::train: training an OPQ rotation matrix "
|
|
"for M=%d from %ld vectors in %dD -> %dD\n",
|
|
M, n, d_in, d_out);
|
|
}
|
|
|
|
std::vector<float> xtrain (n * d);
|
|
// center x
|
|
{
|
|
std::vector<float> sum (d);
|
|
const float *xi = x;
|
|
for (size_t i = 0; i < n; i++) {
|
|
for (int j = 0; j < d_in; j++)
|
|
sum [j] += *xi++;
|
|
}
|
|
for (int i = 0; i < d; i++) sum[i] /= n;
|
|
float *yi = xtrain.data();
|
|
xi = x;
|
|
for (size_t i = 0; i < n; i++) {
|
|
for (int j = 0; j < d_in; j++)
|
|
*yi++ = *xi++ - sum[j];
|
|
yi += d - d_in;
|
|
}
|
|
}
|
|
float *rotation;
|
|
|
|
if (A.size () == 0) {
|
|
A.resize (d * d);
|
|
rotation = A.data();
|
|
if (verbose)
|
|
printf(" OPQMatrix::train: making random %ld*%ld rotation\n",
|
|
d, d);
|
|
float_randn (rotation, d * d, 1234);
|
|
matrix_qr (d, d, rotation);
|
|
// we use only the d * d2 upper part of the matrix
|
|
A.resize (d * d2);
|
|
} else {
|
|
FAISS_THROW_IF_NOT (A.size() == d * d2);
|
|
rotation = A.data();
|
|
}
|
|
|
|
std::vector<float>
|
|
xproj (d2 * n), pq_recons (d2 * n), xxr (d * n),
|
|
tmp(d * d * 4);
|
|
|
|
|
|
ProductQuantizer pq_default (d2, M, 8);
|
|
ProductQuantizer &pq_regular = pq ? *pq : pq_default;
|
|
std::vector<uint8_t> codes (pq_regular.code_size * n);
|
|
|
|
double t0 = getmillisecs();
|
|
for (int iter = 0; iter < niter; iter++) {
|
|
|
|
{ // torch.mm(xtrain, rotation:t())
|
|
FINTEGER di = d, d2i = d2, ni = n;
|
|
float zero = 0, one = 1;
|
|
sgemm_ ("Transposed", "Not transposed",
|
|
&d2i, &ni, &di,
|
|
&one, rotation, &di,
|
|
xtrain.data(), &di,
|
|
&zero, xproj.data(), &d2i);
|
|
}
|
|
|
|
pq_regular.cp.max_points_per_centroid = 1000;
|
|
pq_regular.cp.niter = iter == 0 ? niter_pq_0 : niter_pq;
|
|
pq_regular.verbose = verbose;
|
|
pq_regular.train (n, xproj.data());
|
|
|
|
if (verbose) {
|
|
printf(" encode / decode\n");
|
|
}
|
|
if (pq_regular.assign_index) {
|
|
pq_regular.compute_codes_with_assign_index
|
|
(xproj.data(), codes.data(), n);
|
|
} else {
|
|
pq_regular.compute_codes (xproj.data(), codes.data(), n);
|
|
}
|
|
pq_regular.decode (codes.data(), pq_recons.data(), n);
|
|
|
|
float pq_err = fvec_L2sqr (pq_recons.data(), xproj.data(), n * d2) / n;
|
|
|
|
if (verbose)
|
|
printf (" Iteration %d (%d PQ iterations):"
|
|
"%.3f s, obj=%g\n", iter, pq_regular.cp.niter,
|
|
(getmillisecs () - t0) / 1000.0, pq_err);
|
|
|
|
{
|
|
float *u = tmp.data(), *vt = &tmp [d * d];
|
|
float *sing_val = &tmp [2 * d * d];
|
|
FINTEGER di = d, d2i = d2, ni = n;
|
|
float one = 1, zero = 0;
|
|
|
|
if (verbose) {
|
|
printf(" X * recons\n");
|
|
}
|
|
// torch.mm(xtrain:t(), pq_recons)
|
|
sgemm_ ("Not", "Transposed",
|
|
&d2i, &di, &ni,
|
|
&one, pq_recons.data(), &d2i,
|
|
xtrain.data(), &di,
|
|
&zero, xxr.data(), &d2i);
|
|
|
|
|
|
FINTEGER lwork = -1, info = -1;
|
|
float worksz;
|
|
// workspace query
|
|
sgesvd_ ("All", "All",
|
|
&d2i, &di, xxr.data(), &d2i,
|
|
sing_val,
|
|
vt, &d2i, u, &di,
|
|
&worksz, &lwork, &info);
|
|
|
|
lwork = int(worksz);
|
|
std::vector<float> work (lwork);
|
|
// u and vt swapped
|
|
sgesvd_ ("All", "All",
|
|
&d2i, &di, xxr.data(), &d2i,
|
|
sing_val,
|
|
vt, &d2i, u, &di,
|
|
work.data(), &lwork, &info);
|
|
|
|
sgemm_ ("Transposed", "Transposed",
|
|
&di, &d2i, &d2i,
|
|
&one, u, &di, vt, &d2i,
|
|
&zero, rotation, &di);
|
|
|
|
}
|
|
pq_regular.train_type = ProductQuantizer::Train_hot_start;
|
|
}
|
|
|
|
// revert A matrix
|
|
if (d > d_in) {
|
|
for (long i = 0; i < d_out; i++)
|
|
memmove (&A[i * d_in], &A[i * d], sizeof(A[0]) * d_in);
|
|
A.resize (d_in * d_out);
|
|
}
|
|
|
|
is_trained = true;
|
|
is_orthonormal = true;
|
|
}
|
|
|
|
|
|
/*********************************************
|
|
* NormalizationTransform
|
|
*********************************************/
|
|
|
|
NormalizationTransform::NormalizationTransform (int d, float norm):
|
|
VectorTransform (d, d), norm (norm)
|
|
{
|
|
}
|
|
|
|
NormalizationTransform::NormalizationTransform ():
|
|
VectorTransform (-1, -1), norm (-1)
|
|
{
|
|
}
|
|
|
|
void NormalizationTransform::apply_noalloc
|
|
(idx_t n, const float* x, float* xt) const
|
|
{
|
|
if (norm == 2.0) {
|
|
memcpy (xt, x, sizeof (x[0]) * n * d_in);
|
|
fvec_renorm_L2 (d_in, n, xt);
|
|
} else {
|
|
FAISS_THROW_MSG ("not implemented");
|
|
}
|
|
}
|
|
|
|
void NormalizationTransform::reverse_transform (idx_t n, const float* xt,
|
|
float* x) const
|
|
{
|
|
memcpy (x, xt, sizeof (xt[0]) * n * d_in);
|
|
}
|
|
|
|
/*********************************************
|
|
* CenteringTransform
|
|
*********************************************/
|
|
|
|
CenteringTransform::CenteringTransform (int d):
|
|
VectorTransform (d, d)
|
|
{
|
|
is_trained = false;
|
|
}
|
|
|
|
void CenteringTransform::train(Index::idx_t n, const float *x) {
|
|
FAISS_THROW_IF_NOT_MSG(n > 0, "need at least one training vector");
|
|
mean.resize (d_in, 0);
|
|
for (idx_t i = 0; i < n; i++) {
|
|
for (size_t j = 0; j < d_in; j++) {
|
|
mean[j] += *x++;
|
|
}
|
|
}
|
|
|
|
for (size_t j = 0; j < d_in; j++) {
|
|
mean[j] /= n;
|
|
}
|
|
is_trained = true;
|
|
}
|
|
|
|
|
|
void CenteringTransform::apply_noalloc
|
|
(idx_t n, const float* x, float* xt) const
|
|
{
|
|
FAISS_THROW_IF_NOT (is_trained);
|
|
|
|
for (idx_t i = 0; i < n; i++) {
|
|
for (size_t j = 0; j < d_in; j++) {
|
|
*xt++ = *x++ - mean[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
void CenteringTransform::reverse_transform (idx_t n, const float* xt,
|
|
float* x) const
|
|
{
|
|
FAISS_THROW_IF_NOT (is_trained);
|
|
|
|
for (idx_t i = 0; i < n; i++) {
|
|
for (size_t j = 0; j < d_in; j++) {
|
|
*x++ = *xt++ + mean[j];
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*********************************************
|
|
* RemapDimensionsTransform
|
|
*********************************************/
|
|
|
|
|
|
RemapDimensionsTransform::RemapDimensionsTransform (
|
|
int d_in, int d_out, const int *map_in):
|
|
VectorTransform (d_in, d_out)
|
|
{
|
|
map.resize (d_out);
|
|
for (int i = 0; i < d_out; i++) {
|
|
map[i] = map_in[i];
|
|
FAISS_THROW_IF_NOT (map[i] == -1 || (map[i] >= 0 && map[i] < d_in));
|
|
}
|
|
}
|
|
|
|
RemapDimensionsTransform::RemapDimensionsTransform (
|
|
int d_in, int d_out, bool uniform): VectorTransform (d_in, d_out)
|
|
{
|
|
map.resize (d_out, -1);
|
|
|
|
if (uniform) {
|
|
if (d_in < d_out) {
|
|
for (int i = 0; i < d_in; i++) {
|
|
map [i * d_out / d_in] = i;
|
|
}
|
|
} else {
|
|
for (int i = 0; i < d_out; i++) {
|
|
map [i] = i * d_in / d_out;
|
|
}
|
|
}
|
|
} else {
|
|
for (int i = 0; i < d_in && i < d_out; i++)
|
|
map [i] = i;
|
|
}
|
|
}
|
|
|
|
|
|
void RemapDimensionsTransform::apply_noalloc (idx_t n, const float * x,
|
|
float *xt) const
|
|
{
|
|
for (idx_t i = 0; i < n; i++) {
|
|
for (int j = 0; j < d_out; j++) {
|
|
xt[j] = map[j] < 0 ? 0 : x[map[j]];
|
|
}
|
|
x += d_in;
|
|
xt += d_out;
|
|
}
|
|
}
|
|
|
|
void RemapDimensionsTransform::reverse_transform (idx_t n, const float * xt,
|
|
float *x) const
|
|
{
|
|
memset (x, 0, sizeof (*x) * n * d_in);
|
|
for (idx_t i = 0; i < n; i++) {
|
|
for (int j = 0; j < d_out; j++) {
|
|
if (map[j] >= 0) x[map[j]] = xt[j];
|
|
}
|
|
x += d_in;
|
|
xt += d_out;
|
|
}
|
|
}
|