faiss/utils/distances.h

244 lines
7.0 KiB
C++

/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
/* All distance functions for L2 and IP distances.
* The actual functions are implemented in distances.cpp and distances_simd.cpp */
#pragma once
#include <stdint.h>
#include <faiss/utils/Heap.h>
namespace faiss {
/*********************************************************
* Optimized distance/norm/inner prod computations
*********************************************************/
/// Squared L2 distance between two vectors
float fvec_L2sqr (
const float * x,
const float * y,
size_t d);
/// inner product
float fvec_inner_product (
const float * x,
const float * y,
size_t d);
/// L1 distance
float fvec_L1 (
const float * x,
const float * y,
size_t d);
float fvec_Linf (
const float * x,
const float * y,
size_t d);
/** Compute pairwise distances between sets of vectors
*
* @param d dimension of the vectors
* @param nq nb of query vectors
* @param nb nb of database vectors
* @param xq query vectors (size nq * d)
* @param xb database vectros (size nb * d)
* @param dis output distances (size nq * nb)
* @param ldq,ldb, ldd strides for the matrices
*/
void pairwise_L2sqr (int64_t d,
int64_t nq, const float *xq,
int64_t nb, const float *xb,
float *dis,
int64_t ldq = -1, int64_t ldb = -1, int64_t ldd = -1);
/* compute the inner product between nx vectors x and one y */
void fvec_inner_products_ny (
float * ip, /* output inner product */
const float * x,
const float * y,
size_t d, size_t ny);
/* compute ny square L2 distance bewteen x and a set of contiguous y vectors */
void fvec_L2sqr_ny (
float * dis,
const float * x,
const float * y,
size_t d, size_t ny);
/** squared norm of a vector */
float fvec_norm_L2sqr (const float * x,
size_t d);
/** compute the L2 norms for a set of vectors
*
* @param ip output norms, size nx
* @param x set of vectors, size nx * d
*/
void fvec_norms_L2 (float * ip, const float * x, size_t d, size_t nx);
/// same as fvec_norms_L2, but computes square norms
void fvec_norms_L2sqr (float * ip, const float * x, size_t d, size_t nx);
/* L2-renormalize a set of vector. Nothing done if the vector is 0-normed */
void fvec_renorm_L2 (size_t d, size_t nx, float * x);
/* This function exists because the Torch counterpart is extremly slow
(not multi-threaded + unexpected overhead even in single thread).
It is here to implement the usual property |x-y|^2=|x|^2+|y|^2-2<x|y> */
void inner_product_to_L2sqr (float * dis,
const float * nr1,
const float * nr2,
size_t n1, size_t n2);
/***************************************************************************
* Compute a subset of distances
***************************************************************************/
/* compute the inner product between x and a subset y of ny vectors,
whose indices are given by idy. */
void fvec_inner_products_by_idx (
float * ip,
const float * x,
const float * y,
const int64_t *ids,
size_t d, size_t nx, size_t ny);
/* same but for a subset in y indexed by idsy (ny vectors in total) */
void fvec_L2sqr_by_idx (
float * dis,
const float * x,
const float * y,
const int64_t *ids, /* ids of y vecs */
size_t d, size_t nx, size_t ny);
/** compute dis[j] = L2sqr(x[ix[j]], y[iy[j]]) forall j=0..n-1
*
* @param x size (max(ix) + 1, d)
* @param y size (max(iy) + 1, d)
* @param ix size n
* @param iy size n
* @param dis size n
*/
void pairwise_indexed_L2sqr (
size_t d, size_t n,
const float * x, const int64_t *ix,
const float * y, const int64_t *iy,
float *dis);
/* same for inner product */
void pairwise_indexed_inner_product (
size_t d, size_t n,
const float * x, const int64_t *ix,
const float * y, const int64_t *iy,
float *dis);
/***************************************************************************
* KNN functions
***************************************************************************/
// threshold on nx above which we switch to BLAS to compute distances
extern int distance_compute_blas_threshold;
/** Return the k nearest neighors of each of the nx vectors x among the ny
* vector y, w.r.t to max inner product
*
* @param x query vectors, size nx * d
* @param y database vectors, size ny * d
* @param res result array, which also provides k. Sorted on output
*/
void knn_inner_product (
const float * x,
const float * y,
size_t d, size_t nx, size_t ny,
float_minheap_array_t * res);
/** Same as knn_inner_product, for the L2 distance */
void knn_L2sqr (
const float * x,
const float * y,
size_t d, size_t nx, size_t ny,
float_maxheap_array_t * res);
/** same as knn_L2sqr, but base_shift[bno] is subtracted to all
* computed distances.
*
* @param base_shift size ny
*/
void knn_L2sqr_base_shift (
const float * x,
const float * y,
size_t d, size_t nx, size_t ny,
float_maxheap_array_t * res,
const float *base_shift);
/* Find the nearest neighbors for nx queries in a set of ny vectors
* indexed by ids. May be useful for re-ranking a pre-selected vector list
*/
void knn_inner_products_by_idx (
const float * x,
const float * y,
const int64_t * ids,
size_t d, size_t nx, size_t ny,
float_minheap_array_t * res);
void knn_L2sqr_by_idx (const float * x,
const float * y,
const int64_t * ids,
size_t d, size_t nx, size_t ny,
float_maxheap_array_t * res);
/***************************************************************************
* Range search
***************************************************************************/
/// Forward declaration, see AuxIndexStructures.h
struct RangeSearchResult;
/** Return the k nearest neighors of each of the nx vectors x among the ny
* vector y, w.r.t to max inner product
*
* @param x query vectors, size nx * d
* @param y database vectors, size ny * d
* @param radius search radius around the x vectors
* @param result result structure
*/
void range_search_L2sqr (
const float * x,
const float * y,
size_t d, size_t nx, size_t ny,
float radius,
RangeSearchResult *result);
/// same as range_search_L2sqr for the inner product similarity
void range_search_inner_product (
const float * x,
const float * y,
size_t d, size_t nx, size_t ny,
float radius,
RangeSearchResult *result);
} // namespace faiss