faiss/utils/random.cpp

193 lines
4.8 KiB
C++

/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include <faiss/utils/random.h>
namespace faiss {
/**************************************************
* Random data generation functions
**************************************************/
RandomGenerator::RandomGenerator (int64_t seed)
: mt((unsigned int)seed) {}
int RandomGenerator::rand_int ()
{
return mt() & 0x7fffffff;
}
int64_t RandomGenerator::rand_int64 ()
{
return int64_t(rand_int()) | int64_t(rand_int()) << 31;
}
int RandomGenerator::rand_int (int max)
{
return mt() % max;
}
float RandomGenerator::rand_float ()
{
return mt() / float(mt.max());
}
double RandomGenerator::rand_double ()
{
return mt() / double(mt.max());
}
/***********************************************************************
* Random functions in this C file only exist because Torch
* counterparts are slow and not multi-threaded. Typical use is for
* more than 1-100 billion values. */
/* Generate a set of random floating point values such that x[i] in [0,1]
multi-threading. For this reason, we rely on re-entreant functions. */
void float_rand (float * x, size_t n, int64_t seed)
{
// only try to parallelize on large enough arrays
const size_t nblock = n < 1024 ? 1 : 1024;
RandomGenerator rng0 (seed);
int a0 = rng0.rand_int (), b0 = rng0.rand_int ();
#pragma omp parallel for
for (size_t j = 0; j < nblock; j++) {
RandomGenerator rng (a0 + j * b0);
const size_t istart = j * n / nblock;
const size_t iend = (j + 1) * n / nblock;
for (size_t i = istart; i < iend; i++)
x[i] = rng.rand_float ();
}
}
void float_randn (float * x, size_t n, int64_t seed)
{
// only try to parallelize on large enough arrays
const size_t nblock = n < 1024 ? 1 : 1024;
RandomGenerator rng0 (seed);
int a0 = rng0.rand_int (), b0 = rng0.rand_int ();
#pragma omp parallel for
for (size_t j = 0; j < nblock; j++) {
RandomGenerator rng (a0 + j * b0);
double a = 0, b = 0, s = 0;
int state = 0; /* generate two number per "do-while" loop */
const size_t istart = j * n / nblock;
const size_t iend = (j + 1) * n / nblock;
for (size_t i = istart; i < iend; i++) {
/* Marsaglia's method (see Knuth) */
if (state == 0) {
do {
a = 2.0 * rng.rand_double () - 1;
b = 2.0 * rng.rand_double () - 1;
s = a * a + b * b;
} while (s >= 1.0);
x[i] = a * sqrt(-2.0 * log(s) / s);
}
else
x[i] = b * sqrt(-2.0 * log(s) / s);
state = 1 - state;
}
}
}
/* Integer versions */
void int64_rand (int64_t * x, size_t n, int64_t seed)
{
// only try to parallelize on large enough arrays
const size_t nblock = n < 1024 ? 1 : 1024;
RandomGenerator rng0 (seed);
int a0 = rng0.rand_int (), b0 = rng0.rand_int ();
#pragma omp parallel for
for (size_t j = 0; j < nblock; j++) {
RandomGenerator rng (a0 + j * b0);
const size_t istart = j * n / nblock;
const size_t iend = (j + 1) * n / nblock;
for (size_t i = istart; i < iend; i++)
x[i] = rng.rand_int64 ();
}
}
void int64_rand_max (int64_t * x, size_t n, uint64_t max, int64_t seed)
{
// only try to parallelize on large enough arrays
const size_t nblock = n < 1024 ? 1 : 1024;
RandomGenerator rng0 (seed);
int a0 = rng0.rand_int (), b0 = rng0.rand_int ();
#pragma omp parallel for
for (size_t j = 0; j < nblock; j++) {
RandomGenerator rng (a0 + j * b0);
const size_t istart = j * n / nblock;
const size_t iend = (j + 1) * n / nblock;
for (size_t i = istart; i < iend; i++)
x[i] = rng.rand_int64 () % max;
}
}
void rand_perm (int *perm, size_t n, int64_t seed)
{
for (size_t i = 0; i < n; i++) perm[i] = i;
RandomGenerator rng (seed);
for (size_t i = 0; i + 1 < n; i++) {
int i2 = i + rng.rand_int (n - i);
std::swap(perm[i], perm[i2]);
}
}
void byte_rand (uint8_t * x, size_t n, int64_t seed)
{
// only try to parallelize on large enough arrays
const size_t nblock = n < 1024 ? 1 : 1024;
RandomGenerator rng0 (seed);
int a0 = rng0.rand_int (), b0 = rng0.rand_int ();
#pragma omp parallel for
for (size_t j = 0; j < nblock; j++) {
RandomGenerator rng (a0 + j * b0);
const size_t istart = j * n / nblock;
const size_t iend = (j + 1) * n / nblock;
size_t i;
for (i = istart; i < iend; i++)
x[i] = rng.rand_int64 ();
}
}
} // namespace faiss