faiss/tutorial/python/2-IVFFlat.py
Michael Norris eff0898a13 Enable linting: lint config changes plus arc lint command (#3966)
Summary:
Pull Request resolved: https://github.com/facebookresearch/faiss/pull/3966

This actually enables the linting.

Manual changes:
- tools/arcanist/lint/fbsource-licenselint-config.toml
- tools/arcanist/lint/fbsource-lint-engine.toml

Automated changes:
`arc lint --apply-patches --take LICENSELINT --paths-cmd 'hg files faiss'`

Reviewed By: asadoughi

Differential Revision: D64484165

fbshipit-source-id: 4f2f6e953c94ef6ebfea8a5ae035ccfbea65ed04
2024-10-22 09:46:48 -07:00

35 lines
1.2 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
d = 64 # dimension
nb = 100000 # database size
nq = 10000 # nb of queries
np.random.seed(1234) # make reproducible
xb = np.random.random((nb, d)).astype('float32')
xb[:, 0] += np.arange(nb) / 1000.
xq = np.random.random((nq, d)).astype('float32')
xq[:, 0] += np.arange(nq) / 1000.
import faiss
nlist = 100
k = 4
quantizer = faiss.IndexFlatL2(d) # the other index
index = faiss.IndexIVFFlat(quantizer, d, nlist, faiss.METRIC_L2)
# here we specify METRIC_L2, by default it performs inner-product search
assert not index.is_trained
index.train(xb)
assert index.is_trained
index.add(xb) # add may be a bit slower as well
D, I = index.search(xq, k) # actual search
print(I[-5:]) # neighbors of the 5 last queries
index.nprobe = 10 # default nprobe is 1, try a few more
D, I = index.search(xq, k)
print(I[-5:]) # neighbors of the 5 last queries