faiss/ProductQuantizer.h

244 lines
7.1 KiB
C++

/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#ifndef FAISS_PRODUCT_QUANTIZER_H
#define FAISS_PRODUCT_QUANTIZER_H
#include <stdint.h>
#include <vector>
#include "Clustering.h"
#include "Heap.h"
namespace faiss {
/** Product Quantizer. Implemented only for METRIC_L2 */
struct ProductQuantizer {
using idx_t = Index::idx_t;
size_t d; ///< size of the input vectors
size_t M; ///< number of subquantizers
size_t nbits; ///< number of bits per quantization index
// values derived from the above
size_t dsub; ///< dimensionality of each subvector
size_t code_size; ///< byte per indexed vector
size_t ksub; ///< number of centroids for each subquantizer
bool verbose; ///< verbose during training?
/// initialization
enum train_type_t {
Train_default,
Train_hot_start, ///< the centroids are already initialized
Train_shared, ///< share dictionary accross PQ segments
Train_hypercube, ///< intialize centroids with nbits-D hypercube
Train_hypercube_pca, ///< intialize centroids with nbits-D hypercube
};
train_type_t train_type;
ClusteringParameters cp; ///< parameters used during clustering
/// if non-NULL, use this index for assignment (should be of size
/// d / M)
Index *assign_index;
/// Centroid table, size M * ksub * dsub
std::vector<float> centroids;
/// return the centroids associated with subvector m
float * get_centroids (size_t m, size_t i) {
return &centroids [(m * ksub + i) * dsub];
}
const float * get_centroids (size_t m, size_t i) const {
return &centroids [(m * ksub + i) * dsub];
}
// Train the product quantizer on a set of points. A clustering
// can be set on input to define non-default clustering parameters
void train (int n, const float *x);
ProductQuantizer(size_t d, /* dimensionality of the input vectors */
size_t M, /* number of subquantizers */
size_t nbits); /* number of bit per subvector index */
ProductQuantizer ();
/// compute derived values when d, M and nbits have been set
void set_derived_values ();
/// Define the centroids for subquantizer m
void set_params (const float * centroids, int m);
/// Quantize one vector with the product quantizer
void compute_code (const float * x, uint8_t * code) const ;
/// same as compute_code for several vectors
void compute_codes (const float * x,
uint8_t * codes,
size_t n) const ;
/// speed up code assignment using assign_index
/// (non-const because the index is changed)
void compute_codes_with_assign_index (
const float * x,
uint8_t * codes,
size_t n);
/// decode a vector from a given code (or n vectors if third argument)
void decode (const uint8_t *code, float *x) const;
void decode (const uint8_t *code, float *x, size_t n) const;
/// If we happen to have the distance tables precomputed, this is
/// more efficient to compute the codes.
void compute_code_from_distance_table (const float *tab,
uint8_t *code) const;
/** Compute distance table for one vector.
*
* The distance table for x = [x_0 x_1 .. x_(M-1)] is a M * ksub
* matrix that contains
*
* dis_table (m, j) = || x_m - c_(m, j)||^2
* for m = 0..M-1 and j = 0 .. ksub - 1
*
* where c_(m, j) is the centroid no j of sub-quantizer m.
*
* @param x input vector size d
* @param dis_table output table, size M * ksub
*/
void compute_distance_table (const float * x,
float * dis_table) const;
void compute_inner_prod_table (const float * x,
float * dis_table) const;
/** compute distance table for several vectors
* @param nx nb of input vectors
* @param x input vector size nx * d
* @param dis_table output table, size nx * M * ksub
*/
void compute_distance_tables (size_t nx,
const float * x,
float * dis_tables) const;
void compute_inner_prod_tables (size_t nx,
const float * x,
float * dis_tables) const;
/** perform a search (L2 distance)
* @param x query vectors, size nx * d
* @param nx nb of queries
* @param codes database codes, size ncodes * code_size
* @param ncodes nb of nb vectors
* @param res heap array to store results (nh == nx)
* @param init_finalize_heap initialize heap (input) and sort (output)?
*/
void search (const float * x,
size_t nx,
const uint8_t * codes,
const size_t ncodes,
float_maxheap_array_t *res,
bool init_finalize_heap = true) const;
/** same as search, but with inner product similarity */
void search_ip (const float * x,
size_t nx,
const uint8_t * codes,
const size_t ncodes,
float_minheap_array_t *res,
bool init_finalize_heap = true) const;
/// Symmetric Distance Table
std::vector<float> sdc_table;
// intitialize the SDC table from the centroids
void compute_sdc_table ();
void search_sdc (const uint8_t * qcodes,
size_t nq,
const uint8_t * bcodes,
const size_t ncodes,
float_maxheap_array_t * res,
bool init_finalize_heap = true) const;
struct PQEncoderGeneric {
uint8_t *code; ///< code for this vector
uint8_t offset;
const int nbits; ///< number of bits per subquantizer index
uint8_t reg;
PQEncoderGeneric(uint8_t *code, int nbits, uint8_t offset = 0);
void encode(uint64_t x);
~PQEncoderGeneric();
};
struct PQEncoder8 {
uint8_t *code;
PQEncoder8(uint8_t *code, int nbits);
void encode(uint64_t x);
};
struct PQEncoder16 {
uint16_t *code;
PQEncoder16(uint8_t *code, int nbits);
void encode(uint64_t x);
};
struct PQDecoderGeneric {
const uint8_t *code;
uint8_t offset;
const int nbits;
const uint64_t mask;
uint8_t reg;
PQDecoderGeneric(const uint8_t *code, int nbits);
uint64_t decode();
};
struct PQDecoder8 {
const uint8_t *code;
PQDecoder8(const uint8_t *code, int nbits);
uint64_t decode();
};
struct PQDecoder16 {
const uint16_t *code;
PQDecoder16(const uint8_t *code, int nbits);
uint64_t decode();
};
};
} // namespace faiss
#endif