faiss/benchs/bench_gpu_sift1m.py
Lucas Hosseini a8118acbc5
Facebook sync (May 2019) + relicense (#838)
Changelog:

- changed license: BSD+Patents -> MIT
- propagates exceptions raised in sub-indexes of IndexShards and IndexReplicas
- support for searching several inverted lists in parallel (parallel_mode != 0)
- better support for PQ codes where nbit != 8 or 16
- IVFSpectralHash implementation: spectral hash codes inside an IVF
- 6-bit per component scalar quantizer (4 and 8 bit were already supported)
- combinations of inverted lists: HStackInvertedLists and VStackInvertedLists
- configurable number of threads for OnDiskInvertedLists prefetching (including 0=no prefetch)
- more test and demo code compatible with Python 3 (print with parentheses)
- refactored benchmark code: data loading is now in a single file
2019-05-28 16:17:22 +02:00

95 lines
2.0 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
#!/usr/bin/env python2
from __future__ import print_function
import os
import time
import numpy as np
import pdb
import faiss
from datasets import load_sift1M, evaluate
print("load data")
xb, xq, xt, gt = load_sift1M()
nq, d = xq.shape
# we need only a StandardGpuResources per GPU
res = faiss.StandardGpuResources()
#################################################################
# Exact search experiment
#################################################################
print("============ Exact search")
flat_config = faiss.GpuIndexFlatConfig()
flat_config.device = 0
index = faiss.GpuIndexFlatL2(res, d, flat_config)
print("add vectors to index")
index.add(xb)
print("warmup")
index.search(xq, 123)
print("benchmark")
for lk in range(11):
k = 1 << lk
t, r = evaluate(index, xq, gt, k)
# the recall should be 1 at all times
print("k=%d %.3f ms, R@1 %.4f" % (k, t, r[1]))
#################################################################
# Approximate search experiment
#################################################################
print("============ Approximate search")
index = faiss.index_factory(d, "IVF4096,PQ64")
# faster, uses more memory
# index = faiss.index_factory(d, "IVF16384,Flat")
co = faiss.GpuClonerOptions()
# here we are using a 64-byte PQ, so we must set the lookup tables to
# 16 bit float (this is due to the limited temporary memory).
co.useFloat16 = True
index = faiss.index_cpu_to_gpu(res, 0, index, co)
print("train")
index.train(xt)
print("add vectors to index")
index.add(xb)
print("warmup")
index.search(xq, 123)
print("benchmark")
for lnprobe in range(10):
nprobe = 1 << lnprobe
index.setNumProbes(nprobe)
t, r = evaluate(index, xq, gt, 100)
print("nprobe=%4d %.3f ms recalls= %.4f %.4f %.4f" % (nprobe, t, r[1], r[10], r[100]))