faiss/example_makefiles/makefile.inc.Linux

141 lines
4.5 KiB
Makefile

# -*- makefile -*-
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# tested on CentOS 7, Ubuntu 16 and Ubuntu 14, see below to adjust flags to distribution.
CXX = g++ -std=c++11
CXXFLAGS = -fPIC -m64 -Wall -g -O3 -fopenmp -Wno-sign-compare
CPUFLAGS = -mavx -msse4 -mpopcnt
LDFLAGS = -fPIC -fopenmp
# common linux flags
SHAREDEXT = so
SHAREDFLAGS = -shared
MKDIR_P = mkdir -p
prefix ?= /usr/local
exec_prefix ?= ${prefix}
libdir = ${exec_prefix}/lib
includedir = ${prefix}/include
##########################################################################
# Uncomment one of the 4 BLAS/Lapack implementation options
# below. They are sorted # from fastest to slowest (in our
# experiments).
##########################################################################
#
# 1. Intel MKL
#
# This is the fastest BLAS implementation we tested. Unfortunately it
# is not open-source and determining the correct linking flags is a
# nightmare. See
#
# https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
#
# The latest tested version is MKL 2017.0.098 (2017 Initial Release) and can
# be downloaded here:
#
# https://registrationcenter.intel.com/en/forms/?productid=2558&licensetype=2
#
# The following settings are working if MKL is installed on its default folder:
#
# MKLROOT = /opt/intel/compilers_and_libraries/linux/mkl/
#
# LDFLAGS += -Wl,--no-as-needed -L$(MKLROOT)/lib/intel64
# LIBS += -lmkl_intel_ilp64 -lmkl_core -lmkl_gnu_thread -ldl -lpthread
#
# CPPFLAGS += -DFINTEGER=long
#
# You may have to set the LD_LIBRARY_PATH=$MKLROOT/lib/intel64 at runtime.
#
# If at runtime you get the error:
# Intel MKL FATAL ERROR: Cannot load libmkl_avx2.so or libmkl_def.so
# you may set
# LD_PRELOAD=$MKLROOT/lib/intel64/libmkl_core.so:$MKLROOT/lib/intel64/libmkl_sequential.so
# at runtime as well.
#
# 2. Openblas
#
# The library contains both BLAS and Lapack. About 30% slower than MKL. Please see
# https://github.com/facebookresearch/faiss/wiki/Troubleshooting#slow-brute-force-search-with-openblas
# to fix performance problemes with OpenBLAS
# for Ubuntu 16:
# sudo apt-get install libopenblas-dev python-numpy python-dev
# for Ubuntu 14:
# sudo apt-get install libopenblas-dev liblapack3 python-numpy python-dev
CPPFLAGS += -DFINTEGER=int
LIBS += -lopenblas -llapack
# 3. Atlas
#
# Automatically tuned linear algebra package. As the name indicates,
# it is tuned automatically for a give architecture, and in Linux
# distributions, it the architecture is typically indicated by the
# directory name, eg. atlas-sse3 = optimized for SSE3 architecture.
#
# BLASCFLAGS=-DFINTEGER=int
# BLASLDFLAGS=/usr/lib64/atlas-sse3/libptf77blas.so.3 /usr/lib64/atlas-sse3/liblapack.so
#
# 4. reference implementation
#
# This is just a compiled version of the reference BLAS
# implementation, that is not optimized at all.
#
# CPPFLAGS += -DFINTEGER=int
# LIBS += /usr/lib64/libblas.so.3 /usr/lib64/liblapack.so.3.2
#
##########################################################################
# SWIG and Python flags
##########################################################################
# SWIG executable. This should be at least version 3.x
SWIG = swig
# The Python include directories for a given python executable can
# typically be found with
#
# python -c "import distutils.sysconfig; print distutils.sysconfig.get_python_inc()"
# python -c "import numpy ; print numpy.get_include()"
#
# or, for Python 3, with
#
# python3 -c "import distutils.sysconfig; print(distutils.sysconfig.get_python_inc())"
# python3 -c "import numpy ; print(numpy.get_include())"
#
PYTHONCFLAGS = -I/usr/include/python2.7/ -I/usr/lib64/python2.7/site-packages/numpy/core/include/
PYTHONLIB = -lpython
PYTHON = /usr/bin/python
###########################################################################
# Cuda GPU flags
###########################################################################
# root of the cuda 8 installation
CUDAROOT = /usr/local/cuda-8.0
NVCC = $(CUDAROOT)/bin/nvcc
NVCCLDFLAGS = -L$(CUDAROOT)/lib64
NVCCLIBS = -lcudart -lcublas -lcuda
CUDACFLAGS = -I$(CUDAROOT)/include
NVCCFLAGS = -I $(CUDAROOT)/targets/x86_64-linux/include/ \
-Xcompiler -fPIC \
-Xcudafe --diag_suppress=unrecognized_attribute \
-gencode arch=compute_35,code="compute_35" \
-gencode arch=compute_52,code="compute_52" \
-gencode arch=compute_60,code="compute_60" \
-lineinfo \
-ccbin $(CXX) -DFAISS_USE_FLOAT16