mirror of
https://github.com/facebookresearch/faiss.git
synced 2025-06-03 21:54:02 +08:00
Summary: IndexPQ and IndexIVFPQ implementations with AVX shuffle instructions. The training and computing of the codes does not change wrt. the original PQ versions but the code layout is "packed" so that it can be used efficiently by the SIMD computation kernels. The main changes are: - new IndexPQFastScan and IndexIVFPQFastScan objects - simdib.h for an abstraction above the AVX2 intrinsics - BlockInvertedLists for invlists that are 32-byte aligned and where codes are not sequential - pq4_fast_scan.h/.cpp: for packing codes and look-up tables + optmized distance comptuation kernels - simd_result_hander.h: SIMD version of result collection in heaps / reservoirs Misc changes: - added contrib.inspect_tools to access fields in C++ objects - moved .h and .cpp code for inverted lists to an invlists/ subdirectory, and made a .h/.cpp for InvertedListsIOHook - added a new inverted lists type with 32-byte aligned codes (for consumption by SIMD) - moved Windows-specific intrinsics to platfrom_macros.h Pull Request resolved: https://github.com/facebookresearch/faiss/pull/1542 Test Plan: ``` buck test mode/opt -j 4 //faiss/tests/:test_fast_scan_ivf //faiss/tests/:test_fast_scan buck test mode/opt //faiss/manifold/... ``` Reviewed By: wickedfoo Differential Revision: D25175439 Pulled By: mdouze fbshipit-source-id: ad1a40c0df8c10f4b364bdec7172e43d71b56c34
348 lines
10 KiB
Python
348 lines
10 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
#
|
|
# This source code is licensed under the MIT license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import numpy as np
|
|
|
|
import faiss
|
|
import unittest
|
|
|
|
|
|
|
|
class PartitionTests:
|
|
|
|
def test_partition(self):
|
|
self.do_partition(160, 80)
|
|
|
|
def test_partition_manydups(self):
|
|
self.do_partition(160, 80, maxval=16)
|
|
|
|
def test_partition_lowq(self):
|
|
self.do_partition(160, 10, maxval=16)
|
|
|
|
def test_partition_highq(self):
|
|
self.do_partition(165, 155, maxval=16)
|
|
|
|
def test_partition_q10(self):
|
|
self.do_partition(32, 10, maxval=500)
|
|
|
|
def test_partition_q10_dups(self):
|
|
self.do_partition(32, 10, maxval=16)
|
|
|
|
def test_partition_q10_fuzzy(self):
|
|
self.do_partition(32, (10, 15), maxval=500)
|
|
|
|
def test_partition_fuzzy(self):
|
|
self.do_partition(160, (70, 80), maxval=500)
|
|
|
|
def test_partition_fuzzy_2(self):
|
|
self.do_partition(160, (70, 80))
|
|
|
|
|
|
|
|
class TestPartitioningFloat(unittest.TestCase, PartitionTests):
|
|
|
|
def do_partition(self, n, q, maxval=None, seed=None):
|
|
if seed is None:
|
|
for i in range(50):
|
|
self.do_partition(n, q, maxval, i + 1234)
|
|
# print("seed=", seed)
|
|
rs = np.random.RandomState(seed)
|
|
if maxval is None:
|
|
vals = rs.rand(n).astype('float32')
|
|
else:
|
|
vals = rs.randint(maxval, size=n).astype('float32')
|
|
|
|
ids = (rs.permutation(n) + 12345).astype('int64')
|
|
dic = dict(zip(ids, vals))
|
|
|
|
vals_orig = vals.copy()
|
|
|
|
sp = faiss.swig_ptr
|
|
if type(q) == int:
|
|
faiss.CMax_float_partition_fuzzy(
|
|
sp(vals), sp(ids), n,
|
|
q, q, None
|
|
)
|
|
else:
|
|
q_min, q_max = q
|
|
q = np.array([-1], dtype='uint64')
|
|
faiss.CMax_float_partition_fuzzy(
|
|
sp(vals), sp(ids), n,
|
|
q_min, q_max, sp(q)
|
|
)
|
|
q = q[0]
|
|
assert q_min <= q <= q_max
|
|
|
|
o = vals_orig.argsort()
|
|
thresh = vals_orig[o[q]]
|
|
n_eq = (vals_orig[o[:q]] == thresh).sum()
|
|
|
|
for i in range(q):
|
|
self.assertEqual(vals[i], dic[ids[i]])
|
|
self.assertLessEqual(vals[i], thresh)
|
|
if vals[i] == thresh:
|
|
n_eq -= 1
|
|
self.assertEqual(n_eq, 0)
|
|
|
|
|
|
class TestPartitioningFloatMin(unittest.TestCase, PartitionTests):
|
|
|
|
def do_partition(self, n, q, maxval=None, seed=None):
|
|
if seed is None:
|
|
for i in range(50):
|
|
self.do_partition(n, q, maxval, i + 1234)
|
|
# print("seed=", seed)
|
|
rs = np.random.RandomState(seed)
|
|
if maxval is None:
|
|
vals = rs.rand(n).astype('float32')
|
|
mirval = 1.0
|
|
else:
|
|
vals = rs.randint(maxval, size=n).astype('float32')
|
|
mirval = 65536
|
|
|
|
ids = (rs.permutation(n) + 12345).astype('int64')
|
|
dic = dict(zip(ids, vals))
|
|
|
|
vals_orig = vals.copy()
|
|
|
|
vals[:] = mirval - vals
|
|
|
|
sp = faiss.swig_ptr
|
|
if type(q) == int:
|
|
faiss.CMin_float_partition_fuzzy(
|
|
sp(vals), sp(ids), n,
|
|
q, q, None
|
|
)
|
|
else:
|
|
q_min, q_max = q
|
|
q = np.array([-1], dtype='uint64')
|
|
faiss.CMin_float_partition_fuzzy(
|
|
sp(vals), sp(ids), n,
|
|
q_min, q_max, sp(q)
|
|
)
|
|
q = q[0]
|
|
assert q_min <= q <= q_max
|
|
|
|
vals[:] = mirval - vals
|
|
|
|
o = vals_orig.argsort()
|
|
thresh = vals_orig[o[q]]
|
|
n_eq = (vals_orig[o[:q]] == thresh).sum()
|
|
|
|
for i in range(q):
|
|
np.testing.assert_almost_equal(vals[i], dic[ids[i]], decimal=5)
|
|
self.assertLessEqual(vals[i], thresh)
|
|
if vals[i] == thresh:
|
|
n_eq -= 1
|
|
self.assertEqual(n_eq, 0)
|
|
|
|
|
|
class TestPartitioningUint16(unittest.TestCase, PartitionTests):
|
|
|
|
def do_partition(self, n, q, maxval=65536, seed=None):
|
|
if seed is None:
|
|
for i in range(50):
|
|
self.do_partition(n, q, maxval, i + 1234)
|
|
|
|
# print("seed=", seed)
|
|
rs = np.random.RandomState(seed)
|
|
vals = rs.randint(maxval, size=n).astype('uint16')
|
|
ids = (rs.permutation(n) + 12345).astype('int64')
|
|
dic = dict(zip(ids, vals))
|
|
|
|
sp = faiss.swig_ptr
|
|
vals_orig = vals.copy()
|
|
|
|
tab_a = faiss.AlignedTableUint16()
|
|
faiss.copy_array_to_AlignedTable(vals, tab_a)
|
|
|
|
# print("tab a type", tab_a.get())
|
|
if type(q) == int:
|
|
thresh2 = faiss.CMax_uint16_partition_fuzzy(
|
|
tab_a.get(), sp(ids), n, q, q, None)
|
|
else:
|
|
q_min, q_max = q
|
|
q = np.array([-1], dtype='uint64')
|
|
thresh2 = faiss.CMax_uint16_partition_fuzzy(
|
|
tab_a.get(), sp(ids), n,
|
|
q_min, q_max, sp(q)
|
|
)
|
|
q = q[0]
|
|
assert q_min <= q <= q_max
|
|
|
|
vals = faiss.AlignedTable_to_array(tab_a)
|
|
|
|
o = vals_orig.argsort()
|
|
thresh = vals_orig[o[q]]
|
|
n_eq = (vals_orig[o[:q]] == thresh).sum()
|
|
|
|
for i in range(q):
|
|
self.assertEqual(vals[i], dic[ids[i]])
|
|
self.assertLessEqual(vals[i], thresh)
|
|
if vals[i] == thresh:
|
|
n_eq -= 1
|
|
self.assertEqual(n_eq, 0)
|
|
|
|
|
|
|
|
class TestPartitioningUint16Min(unittest.TestCase, PartitionTests):
|
|
|
|
def do_partition(self, n, q, maxval=65536, seed=None):
|
|
#seed = 1235
|
|
if seed is None:
|
|
for i in range(50):
|
|
self.do_partition(n, q, maxval, i + 1234)
|
|
# print("seed=", seed)
|
|
rs = np.random.RandomState(seed)
|
|
vals = rs.randint(maxval, size=n).astype('uint16')
|
|
ids = (rs.permutation(n) + 12345).astype('int64')
|
|
dic = dict(zip(ids, vals))
|
|
|
|
sp = faiss.swig_ptr
|
|
vals_orig = vals.copy()
|
|
|
|
tab_a = faiss.AlignedTableUint16()
|
|
vals_inv = (65535 - vals).astype('uint16')
|
|
faiss.copy_array_to_AlignedTable(vals_inv, tab_a)
|
|
|
|
# print("tab a type", tab_a.get())
|
|
if type(q) == int:
|
|
thresh2 = faiss.CMin_uint16_partition_fuzzy(
|
|
tab_a.get(), sp(ids), n, q, q, None)
|
|
else:
|
|
q_min, q_max = q
|
|
q = np.array([-1], dtype='uint64')
|
|
thresh2 = faiss.CMin_uint16_partition_fuzzy(
|
|
tab_a.get(), sp(ids), n,
|
|
q_min, q_max, sp(q)
|
|
)
|
|
q = q[0]
|
|
assert q_min <= q <= q_max
|
|
|
|
vals_inv = faiss.AlignedTable_to_array(tab_a)
|
|
vals = 65535 - vals_inv
|
|
|
|
o = vals_orig.argsort()
|
|
thresh = vals_orig[o[q]]
|
|
n_eq = (vals_orig[o[:q]] == thresh).sum()
|
|
|
|
for i in range(q):
|
|
self.assertEqual(vals[i], dic[ids[i]])
|
|
self.assertLessEqual(vals[i], thresh)
|
|
if vals[i] == thresh:
|
|
n_eq -= 1
|
|
self.assertEqual(n_eq, 0)
|
|
|
|
|
|
class TestHistograms(unittest.TestCase):
|
|
|
|
def do_test(self, nbin, n):
|
|
rs = np.random.RandomState(123)
|
|
tab = rs.randint(nbin, size=n).astype('uint16')
|
|
ref_histogram = np.bincount(tab, minlength=nbin)
|
|
|
|
tab_a = faiss.AlignedTableUint16()
|
|
faiss.copy_array_to_AlignedTable(tab, tab_a)
|
|
|
|
sp = faiss.swig_ptr
|
|
hist = np.zeros(nbin, 'int32')
|
|
if nbin == 8:
|
|
faiss.simd_histogram_8(tab_a.get(), n, 0, -1, sp(hist))
|
|
elif nbin == 16:
|
|
faiss.simd_histogram_16(tab_a.get(), n, 0, -1, sp(hist))
|
|
else:
|
|
raise AssertionError()
|
|
np.testing.assert_array_equal(hist, ref_histogram)
|
|
|
|
def test_8bin_even(self):
|
|
self.do_test(8, 5 * 16)
|
|
|
|
def test_8bin_odd(self):
|
|
self.do_test(8, 123)
|
|
|
|
def test_16bin_even(self):
|
|
self.do_test(16, 5 * 16)
|
|
|
|
def test_16bin_odd(self):
|
|
self.do_test(16, 123)
|
|
|
|
|
|
def do_test_bounded(self, nbin, n, shift=2, minv=500, rspan=None, seed=None):
|
|
if seed is None:
|
|
for run in range(50):
|
|
self.do_test_bounded(nbin, n, shift, minv, rspan, seed=123 + run)
|
|
return
|
|
|
|
if rspan is None:
|
|
rmin, rmax = 0, nbin * 6
|
|
else:
|
|
rmin, rmax = rspan
|
|
|
|
rs = np.random.RandomState(seed)
|
|
tab = rs.randint(rmin, rmax, size=n).astype('uint16')
|
|
bc = np.bincount(tab, minlength=65536)
|
|
|
|
binsize = 1 << shift
|
|
ref_histogram = bc[minv : minv + binsize * nbin]
|
|
|
|
def pad_and_reshape(x, m, n):
|
|
xout = np.zeros(m * n, dtype=x.dtype)
|
|
xout[:x.size] = x
|
|
return xout.reshape(m, n)
|
|
|
|
ref_histogram = pad_and_reshape(ref_histogram, nbin, binsize)
|
|
ref_histogram = ref_histogram.sum(1)
|
|
|
|
tab_a = faiss.AlignedTableUint16()
|
|
faiss.copy_array_to_AlignedTable(tab, tab_a)
|
|
sp = faiss.swig_ptr
|
|
|
|
hist = np.zeros(nbin, 'int32')
|
|
if nbin == 8:
|
|
faiss.simd_histogram_8(
|
|
tab_a.get(), n, minv, shift, sp(hist)
|
|
)
|
|
elif nbin == 16:
|
|
faiss.simd_histogram_16(
|
|
tab_a.get(), n, minv, shift, sp(hist)
|
|
)
|
|
else:
|
|
raise AssertionError()
|
|
|
|
np.testing.assert_array_equal(hist, ref_histogram)
|
|
|
|
def test_8bin_even_bounded(self):
|
|
self.do_test_bounded(8, 22 * 16)
|
|
|
|
def test_8bin_odd_bounded(self):
|
|
self.do_test_bounded(8, 10000)
|
|
|
|
def test_16bin_even_bounded(self):
|
|
self.do_test_bounded(16, 22 * 16)
|
|
|
|
def test_16bin_odd_bounded(self):
|
|
self.do_test_bounded(16, 10000)
|
|
|
|
def test_16bin_bounded_bigrange(self):
|
|
self.do_test_bounded(16, 1000, shift=12, rspan=(10, 65500))
|
|
|
|
def test_8bin_bounded_bigrange(self):
|
|
self.do_test_bounded(8, 1000, shift=13, rspan=(10, 65500))
|
|
|
|
def test_16bin_bounded_bigrange_2(self):
|
|
self.do_test_bounded(16, 10, shift=12, rspan=(65000, 65500))
|
|
|
|
def test_16bin_bounded_shift0(self):
|
|
self.do_test_bounded(16, 10000, shift=0, rspan=(10, 65500))
|
|
|
|
def test_8bin_bounded_shift0(self):
|
|
self.do_test_bounded(8, 10000, shift=0, rspan=(10, 65500))
|
|
|
|
def test_16bin_bounded_ignore_out_range(self):
|
|
self.do_test_bounded(16, 10000, shift=5, rspan=(100, 20000), minv=300)
|
|
|
|
def test_8bin_bounded_ignore_out_range(self):
|
|
self.do_test_bounded(8, 10000, shift=5, rspan=(100, 20000), minv=300)
|